
NASA CR 114577
(Available to the Public)

ANALYSIS OF INLET FLOW
DISTORTION AND TURBULENCE EFFECTS

ON COMPRESSOR STABILITY

By

H. C. MELICK

31 March 1973

Distribution of this report is provided in the interest of
information exchange. Responsibility for the contents
resides in the: author or organization that prepared it.

iCOB PR SOR STABILITY (LTV Aerospace Corp.)

CSCL 21E
UnclasPrepared- Hn na e Uv. G3/28 68331

By

VOUGHT SYSTEMS DIVISION
LTV AEROSPACE CORPORATION'.

,e, ·. ,?_~ "., 

National Ae

For ;,"'N '

eronautics and Sp .Ad is-tration
Ames Research Center

Moffett Field, California rv, JhP , 

.. /

V,AUKS Sn'tS,



OF INLET FLOW

DISTORTION AND TURBULENCE EFFECTS

ON COMPRESSOR STABILITY

By

H. C. MvELICK

31 March 1973

Tech nica Report

(AVAILABLE TO

No. 2-57110/3R-3071

THE PUBLIC)

C

ANALYSIS



Predegg Epve blaf
TABLE OF CONTENTS

Page

SUMMARY ......... . ................ 1

INTRODUCTION ............ ....................................... 3

SYMBOLS .... 5............ .................................... 5

TASK I - EFFECT OF PRESSURE DISTORTION ON COMPRESSOR STALL .......... 7

Isolated Airfoil Analysis .................... 7

Effect of Unsteady Flow on Lift ................... 7

Unsteady Flow Model ........................................ 8

Extension to Arbitrary Variations in
Angle of Attack ....................................... 10

Airfoil Dynamic Stall .................................. 13

Compressor Analysis ........................................... 15

Relate Distortion to Blade Lift Coefficient .............. 15

Relate Inlet Pressure Distortion to Loss in
Compressor Stall Margin ................................. 17

Application and Generalized Curves ........................... 24

Comparison of Analysis with Test Data ........................ 24

TASK II - FLUID DYNAMIC MODEL OF TURBULENT INLET FLOW ................. 37

Isolated Vortex .............................................. 38

Solutions of the Navier-Stokes Equations of Motion ...... 38

Vortex Description in Cartesian Coordinates ............. 39

Transformation of the Vortex Flow Field to the
Inlet Coordinate System ................................. 42

Statistical Flow Model ....................................... 44

Autocorrelation Function ................................ 45

Power Spectral Density Function ......................... 49

Sensitivity Studies .......................................... 50

Scaling Law for Turbulent Flow ............................... 59

Data Analysis Comparison ..................................... 63

CONCLUSIONS AND RECOMPE)TDATIONS ....................................... 77

APPENDIX A Analysis of Unsteady Potential Flow on an Airfoil .... 79

APPENDIX B Solution of the Differential Equation for the Effective
Angle of Attack .............. ' 84

APPENDIX C Increase in Maximum Lift Coefficient for Unsteady Flow -
Test Data ............................................. 89

iii

PRECEDING PAGE BLANK NOT FIT.MED



APPENDIX D

APPENDIX E

APPENDIX F

APPENDIX G

APPENDIX H

APPENDIX I

APPENDIX J

APPENDIX K

APPENDIX L

APPENDIX M

REFERENCES

Relating Inlet Distortion to Rotor Blade Lift Coefficient.. 91

Computation of the Loss in Compressor Stall Margin -
Computer Program Description ................... .......... 99

Solution of Navier-Stokes Equations for Vortex Flow ....... 129

Boundary Conditions for Vortex Model ... ... .. ............. 139

Details of the Selected Vortex Flow Field ......... ......... 141

Total Pressure and Flow Angle of a Vortex Superimposed on a
Local Flow . .................. ................................ 153

The Autocorrelation Function of a Random Signal Composed of
Several Independent Random Variables ...................... 167

Probability Density Function .............................. 177

Development of the Unsteady Velocity Correlations ......... 189

Fluid Dynamic Model of Turbulent Flow - Computer Routine .. 199

........................................... ., ......... 219

iv



SUMMARY

The effect of steady state circumferential total pressure distortion on
the loss in compressor stall pressure ratio has been established by analytical
techniques. Full scale engine and compressor/fan component test data were
used to provide direct evaluation of the analysis. Favorable results of the
comparison are considered verification of the fundamental hypothesis of this
study. Specifically, since a circumferential total pressure distortion in
an inlet system will result in unsteady flow in the coordinate system of the
rotor blades, an analysis of this type distortion must be performed from an
unsteady aerodynamic point of view. By application of the fundamental
aerothermodynamic laws to the inlet/compressor system, parameters important
in the design of such a system for compatible operation have been identified.
A time constant, directly related to the compressor rotor chord, was found to
be significant, indicating compressor sensitivity to circumferential dis-
tortion'is directly dependent on the rotor chord.

As an initial step in the investigation of the effects of time dependent
total pressure distortion on the compressor stability characteristics, an
analytical model of turbulent flow typical of that found in aircraft inlets
has also been developed. Due to the non-deterministic (random) nature of
this type of flow distortion, the flow analysis requires use of statistical
methods. These methods were combined with basic fluid dynamic concepts
to provide a usable analysis technique. With this model, the power spectral
density function and root mean square level of the time dependent total
pressure take on considerable significance as indicators of the strength and
extent of low pressure regions that are important in the compressor reaction
to inlet flow disturbances. Spectra obtained from the model were compared
with those obtained in tests of a Mach 3 mixed compression inlet to illustrate
the technique of determining the mean size and strength of instantaneous low
pressure regions by statistical techniques and to verify the turbulent flow
model. Excellent agreement was obtained in the comparison verifying this
fundamental approach.

Both the steady state distortion/compressor analysis and the turbulent
flow model are considered developed to the point necessary to initiate the
development program to achieve the long term program objective of combining
these results to establish a fundamental relationship between both inlet
steady state circumferential distortion and turbulence and loss in compressor
stall margin.
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INTRODUCTION

Inlet/engine system stability problems have grown to major proportions
with the continuing press to improve performance and reduce system weight and
volume. The need to solve such problems and to understand the effect of
inlet total pressure distortion on engine compressor stability has become
critical. To date, solutions to the problem of inlet/engine compatibility
have had to come from experimental results since adequate stability analysis
methods were not available. This has resulted in extensive inlet and engine
test requirements. Notwithstanding, the important design variables for
inlet/engine stability remained obscure.

An analytical approach that considers the fundamentals of the dynamic
interaction between inlet flow and engine compressor is needed to augment the
use of the traditional empirical distortion factors. The method needs to
be sufficiently detailed to provide insight into the basic interaction and
yield workable accuracy, yet not detailed to the point of being expensive
and cumbersome to apply.

This program,initiated in April 1972, has been oriented toward
developing basic relationships between inlet flow distortion and turbulence
and the loss in compressor stall margin. A five task approach has been
established. The initial two phases, which comprise the subject matter of
this report, were designed to develop the fundamental techniques required
for successful completion of the program. Future studies combine these
fundamental analyses to relate inlet flow distortion and turbulence to the
loss in compressor stall margin. These analyses can then be used with
data from existing inlet/engine tests to establish procedures capable of
predicting compressor stability margin during the design phase of a
propulsion system.

The objective of Task I is to develop an analytical technique to relate
inlet circumferential total pressure distortion to the loss in compressor
stall margin. A steady state circumferential distortion appears as time
variant in the rotor coordinate system. The developed analysis is unique
since it considers the effects of this unsteady flow on the compressor stage
characteristics. Secondly, the effects of flow distortion are established by
consideration of only the stall margin changes caused by distortion,
eliminating need for detailed construction of individual stage and compressor
performance maps. Favorable comparison between results of the analysis and
experimental data are considered to have verified this approach.

The objective of Task II is to develop a statistical model of inlet
turbulent flow. This was accomplished by the combination of two engineer-
ing disciplines: fluid mechanics and statistical mathematics. Based on
the fundamental hypothesis that the time dependent total pressure fluctua-
tions are a direct result of streamline curvature rather than acoustic waves,
it was assumed that these pressure fluctuations could be described by a
random distribution of descrete vortices transported by the mean flow. The
laws of fluid mechanics were used to describe the fluid dynamic character-
istics of the vortices, while the statistical methods were used to handle
the random properties of the flow. Results of the analysis were verified by
test data. Through this model easily measured inlet flow properties such as
total pressure RMS level and power spectral density function can be inter-
preted in a context meaningful to engine stability.

PRECEDING PAGE BLANK NOT FILMED
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= area
= vortex core radius
= vortex strength coefficient
= coefficient
= constant
= chord
= spring constant
= damping factor
= coefficient in
transformed hyper-
beta function

= coefficient in
transformed
beta function

= differential of ( )
= energy
= error function
= complementary error function
= base of natural logarithm
= force
= frequency
= function of ( )
= real one-sided power
spectral density function

= inlet duct height
= enthalpy
= probe location

= beta density coefficient
= reduced frequency = wc/2 U
= lift
= Mach number
= exponent in beta function
- mass

= frequency of occurence
= rotor RPM
= direction of vortex
rotation (+,-)

= exponent in beta and hyper-
beta density function

= harmonic number
= pressure, 1 2
= dynamic pressure = -p Uo
= ratio
= root mean square
= radius
= LaPlacian variable

ASM

Sx(f)
T
t
U

U

u

V

v

W
X 

Y 

( )
i )2

= loss in stall margin
= complex power spectral

density function
= transfer function
= time
= axial velocity (vortex
analysis)

= relative velocity (compressor
analysis)

= perturbation velocity in
x direction

= vertical velocity (vortex
analysis)

= perturbation velocity in
y direction

= resultant velocity

= coordinates fixed to inlet
probe

= coordinates fixed to vortex

= mean value of ( )

= square of mean value of ( )

= mean square value of ( )

Greek

a = angle of attack
a = flow angle
I = circulation
7 = ratio of specific heats = 1.4
A = difference
E = small distance from probe

= efficiency
71 = total pressure recovery
9 = circumferential angle
v = coefficient of kinematic

viscosity
Xw = 3.14159
P = density
C = RMS value
r = delay time
7 = nondimensional time = tU/c
T( ) = nondimensional time constant =

time constant t( U/c
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SYMBOLS

English

A
a
B
C
C
c
el
C2

D

d

d( )
E
ERF
ERFC
e
F
f
f( )
Gx(f)

H
h
h
i
k
k
L
M
m
m
N
N
n

n

n
P
qo
R
RMS
r
S



SYMBOLS (Continued)

2Q = vorticity
z= angular frequency = 2 r f

English Script

L [ ] = Laplacian operator
p ( ) = probability density

function of ( )
R x(T) = autocorrelation function

of x

Subscript

a = airflow
a = core size
avg = average
ax = axial
c = circulatory
c = compressor
eff = effective
g = general
inst = instantaneous
L = low pressure region
max = maximum
N.C. = non-circulatory
min = minimum
o. = freestream (uniform conditions)
p = pressure
RTR = rotor
r = radial
T = total pressure
v = vortex strength
9 = tangential (circumferential)

direction
o = steady-state
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TASK I
EFFECT OF STEADY STATE TOTAL PRESSURE DISTORTION ON COMPRESSOR STALL MARGIN

The objective of Task I is to relate inlet circumferential steady state
total pressure distortion to loss in engine compressor stall margin. An ana-
lytical technique based on the fundamental aero-thermodynamic laws governing
fluid flow and engine compressor operation has been developed. The general
approach is outlined below and the details presented in subsequent sections.

Distorted inlet flow is composed of total pressure levels both above and
below the average. These regions correspond to deviations in axial flow
velocity from the mean. In the rotating coordinate system of the rotor, these
deviations appear as fluctuations in the stream angle or angle of attack rela-
tive to the rotor blades. Therefore, the flow over the rotor blades is
basically unsteady and hence steady state distortion, as well as unsteady, must
be analyzed by unsteady aerodynamic techniques. Accordingly, as a basis for
the study, the effects of a time varying angle of attack on the lifting
characteristics of an isolated airfoil are established. The results are then
applied to a compressor rotor blade and by relating the work done by the
rotor to the lifting characteristics of the blades, the loss in compressor
stall margin due to an arbitrary circumferential distortion pattern is
established.

Isolated Airfoil Analysis

The primary objective of this specific item is to establish the effect
of unsteady airflow on the lifting characteristics, and in particular on the
maximum lift coefficient, of an isolated airfoil. This will include resolu-
tion of the effects for arbitrary transients in angle of attack. To accomplish
this objective, it is first necessary to understand the flow phenomena
involved in delaying the stall of an airfoil beyond its steady state charac-
teristics when the airfoil is subjected to an unsteady angle of attack
and then develop a mathematical representation of the process which can be
solved for arbitrary, time dependent, angles of attack.

Effect of Unsteady Flow on Lift. - Lift on an airfoil is a consequence
of unequal pressures acting on the upper and lower surfaces. In potential
flow these pressures can be computed from the velocity field by use of the
equations of motion. In the case of unsteady flow, the lift is dependent
not only on the instantaneous angle of attack but also on the following two
factors: (1) the inertia or acceleration of the mass of air in proximity
of the airfoil and, (2) the shedding of the trailing edge vortex which acts
as a dissipative force. The phenomena are analogous to the forces and
acceleration of a damped mass/spring system which can be described by a
linear second order differential equation. Similarly, the lift of an air-
foil subjected to an unsteady flow can be described in the same manner.
As an example, the lift per unit span due to an airfoil undergoing vertical
oscillations at an angular frequency of is:

L(t) ' 1 · + [UwpcC(k) dy + U2c (1)L Jdt+ dt L (



2rPC
where: TfP- = virtual mass

7rpcC(k) = "dissipation constant"

C(k) = function of reduced frequency, k

k = £dc/2U

Similar expressions govern the response of airfoil lift to a wide variety
of motions. The unsteady lift equations for the various classes of motions are
summarized in Appendix A. Airfoil lift characteristics of an oscillating air-
foil are shown in Figure 1 to illustrate the effects caused by the unsteady
motion. Analytical results are shown compared with test data from Reference 3.
The qualitative agreement verifies the classical potential flow analysis.

The effect of the unsteady motion, illustrated in Figure 1 are directly
related to the reduced frequency, k, which is an extremely important parameter
in the analysis of unsteady flow over airfoils. In this parameter the ratio
of chord to airfoil velocity, c/U, is proportional to the time required for a
disturbance to pass from the leading edge to the trailing edge of the airfoil.
The time associated with the disturbance (in this case the oscillations) is
proportional to 1/W. The reduced frequency, k, can therefore be described as
the ratio of the time associated with a disturbance (1/LC) to the time for the
airfoil to react to the disturbance.

2.0

1.5

I
E1.

. 5

0

DATA FROM LIIVA (REFERENCE 3)
-REDUCED FREQUENCY, k - .355

0 5. 10. 15. 20.
Angle of Attack, a ' Degree

OFlre 1. Unsteady Lift of Oscillating Airfoil

Unsteady Flow Model - The response of the airfoil to unsteady motions in
unstalled flow forms the basis on which to develop the phenomenological model
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of an isolated airfoil subjected to angle of attack excursions beyond the steady
state stall limit. This is achieved by modeling the physical mechanisms
involved with a stalling airfoil via the concept of an effective angle of attack.

When a airfoil is subjected to unsteady variations in angle of attack, the
pressure distribution about the airfoil does not correspond to that associated
with the steady state condition for the instantaneous value of angle of attack.
This is due to the finite amount of time required for flow about an airfoil
to adjust to the variations in angle of attack. Flow phenomena requiring
adjustment include the external flow, shed vorticity, and the boundary layer.
Initially the flow at the airfoil leading edge experiences the change in angle
of incidence. At later times this new flow angle is felt at subsequent stations
along the chord of the airfoil. Therefore an effective angle of attack, a eff,
is hypothesized which lags the instantaneous angle. This angle accounts for the
finite time required for airflow adjustment and boundary layer separation to
occur and is modeled mathematically below to enable prediction of the stalling
lift coefficient of an airfoil operating in unsteady flow.

In keeping with the findings of an unstalled airfoil, it is assumed that
the physical mechanisms are governed by a linear second order differential
equation.. Thus, the relationship between the effective and instantaneous angle
of attack can be written as:

d2( eff- 2o ) + (1 + 1 ) d( eff (inst - ao) (2)
d T

E
'T dr Trr1 2 12 12

where: T = non-dimensional time = t(U/c)

Cinst = actual (instantaneous) angle of attack at time, t

aeff = effective angle of attack

a0 = angle of attack about which the perturbations occur.o

The time constants, Tl and r
2 are associated with the airfoil/airflow system

and are to be established from test results. The equation can be solved by
LaPlace transform techniques for instantaneous angles of attack that vary as
simple functions of time. This method of solution and the solutions for a sine
and ramp change are illustrated in Appendix B. The delay in the effective
angle of attack resulting from a step increase in angle of attack is shown in
Figure 2. The dependence of this delay on the respective time constants is
evident.

9
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Flgure 2. Response of Effective An1le of Attack to a Step- Change

The reduction in amplitude and time lag of the effective angle resulting
from an instantaneous angle of attack having a periodic sine variation with
time is illustrated in the Figure 3. This is the type pattern that a com-
pressor rotor blade might experience behind a 180 degree circumferential dis-
tortion pattern. The ratio of the maximum amplitude of the effective angle to
the maximum instantaneous angle (Equation 3) is dependent only on the system
reduced frequency and the two time constants and is designated, f(k).

(aeff a) max(a a-n f (k) = (3)
inst o max (1 + 4k2 12) (1 t 4k2 T2 2)

Since only the ratio of the nbimum angle is of interest the subscript
"max" will be dropped. Henceforth, the function f(k) will be understood as
representing this ratio. The function f(k), shown plotted in Figure 4 for
various values of the respective time constants, is used along with a Fourier
Series to establish the airfoil response to arbitrary variations in the instan-
taneous angle of attack.

Extension to Arbitrary Variations in Angle of Attack - To establish the
rotor airfoil response characteristics to any type of circumferential dis-
tortion pattern, it is necessary to solve Equation 2 for the effective angle of
attack given arbitrary variations in the instantaneous angle of attack. This
will enable the compressor characteristics to be determined as a function of
the circumferential distortion and the subsequent loss in stall margin esti-
mated.

A periodic transient, a inst, can be represented by a sum of sine and
cosine waves,i.e. Fourier Series. Since the governing differential equation
(Equation 2) is linear, solutions can be superimposed. Therefore, by repre-
senting the input transient as a Fourier Series and by the use of superposition,
a solution for an arbitrary transient can be obtained.

10
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Figure 3. "Effective" Angle of Attack Resulting from
a Sine Variation of the Instantaneous Angle
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Figure 4. f(k) vs Reduced Frequency for Several Values of T2
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The Fourier Series representation is as follows:

00 oo

ainst (e) = a + CEn cos (ne) + b sin (ne) (4)
n=1 n=l

Where: n = the harmonic number

0a = average angle of attack

an, bn = Fourier Coefficients

In practice, the number of harmonics required (n) is determined by the accuracy
required in approximating the input signal. As an example the Fourier Series
fit of one cycle of the periodic rectangular pattern is shown in Figure 5(a)
for 10, 25 and 50 harmonics.

-0.1
o

Ctb cP° MY c10 au OA

o 0.0 r0 0 ,aO
O0. A I k -0.10

' OP · -4.o

· op 

2

-- O .O

+0.1 
(b) Effective Angle of Attack

0.0

0 Symbol No. of Harmonics

, 0 10
+0.1 A 25

'f o o 50

0 0

o 100 200 300
ANGULAR POSITION, deg

(a) Fburier Series Fit of Input Angle of Attack

Figure 5. Fourier Series Fit of the Instantaneous and Computed Effective Angles of Attack.

The effective angle of attack is related to the instantaneous angle for
each harmonic through Equation 3. If the variation in the instantaneous angle
of attack has a frequency of f cycles/sec., the angular frequency of oscilla-
tion, Ad, is 27rf and corresponds to the first harmonic in the Fourier Series.
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The second harmonic will be twice 27rf or 47rf. In general, the angular
frequency of the nth harmonic will be n(27rf). Equation 3 can now be applied
to each harmonic as illustrated in Equation 5.

In general:

aine f - = 
f
(
n k )

(5)

The effective angle of attack of the total input signal is found by adding the
solutions for the individual harmonic as indicated by Equation 6.

(eff) - = Z f(nk) a ncos (nO + Y(nk) + Z f(nk) b sin (nO + Y(nk)
n=l nn=l

where i(nk) = tan -
1

(2nkTl) + tan
- 1

(2nk¶2) (6)

The results for the rectangular periodic pattern are shown in Figure 5(b) for
an increasing number of harmonics. Although an accurate fit of the rectangular
wave requires a large number of harmonics, the effective angle is relatively
insensitive to this number.

Airfoil Dynamic Stall - Stall of an airfoil in unsteady flow occurs at
higher instantaneous angles of attack than that obtained under steady state
flow conditions. This is indicated schematically in Figure 6(a), where the
point "D" represents the instantaneous stall point and "B" the steady state
stall point. This concept results in a time lag in the airfoil response to the
unsteady airflow and a reduction in the maximum effective angle of attack.
Both of these items are due to the finite time required for the airflow about
the airfoil to adjust. This lag in response is indicated in Figure 6(b) for
a sinusoidal variation in angle of attack and superimposed on the airfoil
characteristic in Figure 6(c). The relationship governing this effective angle
of attack is given by Equation 6. It is hypothesized that when aeff is equal
to the steady state stall value, stall during unsteady flow will occur. Thus,
in Figure 6(b) when ca ff reaches the steady state stall line (line B) the
airfoil will stall. This stall condition, a eff = C sssis represented for a
sinusoidal oscillation by Equation 7.

- f(k) (7)
ainst -o

Solution of Equation 7 for the instantaneous angle of attack will yield the
maximum allowable value for the specific, f(k). Thus:

aintm - CaO = (asss - ) / f(k) (8)

13
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D _ a steady-stata stall B
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0

a TIME

(a) Typical Airfoil Lift Characteristic (b) Hypothesized Effective Angle, aeff

CL a
Oinst

eaff C0O - steady state (or mean operating point)
B - steady state stall
C - maximum instantaneous excursion
D - "instantaneous" stall point

/ 9/ E - maximum effective angle

a

(c) Effect of Sinusoidal Oscillations
on Airfoil Lift

Figure 6. The Effect of Sinusoidal Oscillation on Airfoil Characteristics

The increase in maximum (stalling) angle of attack of an airfoil will there-
fore be:

ma inmax a sss (asss -)[ 1] (9max inst max sss SSS o 0 f(7 ~(9)

This will be the increase in the stalling value of a i as indicated by
point D in Figure 6(a). The function f(k) is dependent on the respective
system time constants, T 1 and r2, and the reduced frequency, k.

To establish an estimate of the time constants a limited literature survey



of the effect of unsteady flow on the maximum lift coefficient of an airfoil
was conducted and is presented in Appendix C. Results indicate that the time
constants are approximately equal and on the order of 3.5c/U.

In summary, it was found that the response of a lifting airfoil to an
unsteady change in angle of attack was in general governed by a second order
linear differential equation. To represent this unsteady process which is a
function of the time required for airflow accelerations, shedding of necessary
trailing edge vortices, and the delay of boundary layer separation, an
effective angle of attack was hypothesized. By means of this effective angle
of attack a mathematical representation of the increase in stalling lift co-
efficient is established by solution of the governing differential equation.
This is considered an important development since it enables the response
characteristics of a rotor airfoil subjected to unsteady flow conditions to
be determined. These characteristics can then be incorporated into a com-
pressor analysis.

Compressor Analysis

The response of a compressor rotor to circumferential total pressure
distortion will be established by first relating the change in rotor airfoil
angle of attack caused by the distortion to the required change in compressor
pressure ratio. This result will then be combined with the unsteady flow model
for an isolated airfoil to relate the inlet pressure distortion to loss in
compressor stall margin. Fundamental to this analysis is the assumption that
the stage or stages that first cause breakdown or surge in the compressor
operating in undistorted flow are the same limiting stages causing the compressor
to stall when subjected to a distorted flow. This assumption enables the
analysis to predict perturbations of the stall line due to distortion rather
than an absolute stall margin level, which would require a stage by stage
analysis.

Relate Distortion to Blade Lift Coefficient and Compressor Work. - The
object of the following development is to relate the total pressure distortion
at the compressor face to the required additional compressor pressure ratio
and rotor blade lift coefficient. This is accomplished by means of the follow-
ing approach.

The overall performance of a compressor is represented by a compressor map
as shown schematically in Figure 7. To minimize weight, the engine is designed
to operate at high stage loadings, near the stall line as shown. When the
compressor is subjected to a distorted flow, the average work done by the
compressor on the airflow remains constant, and corresponds to point 0 in
Figure 7. However, that section of the compressor operating in the region of
low inlet total pressure must operate at a higher pressure ratio (point 1 in
Figure 7) to pump the flow to the uniform compressor exit pressure. The
opposite condition holds for the high pressure regions, which correspond to
point 2 in Figure 7. The low pressure regions are of prime interest since they
tend to reduce the compressor stall margin. The additional work required in
the low pressure regions is assumed to be evenly divided among the compressor

15



stages. For each stage, the relationship between the change in rotor work
due to distortion and the change in rotor blade lift coefficient can be obtained
by equating the change in work done on the air to the change in the rotor lift
characteristics. This is developed in detail in Appendix D with the following
result.

(CL )rotor /drotor

Stall Line

(1 Operating Line

0~

Corrected Airflow, wa e/6

Figure 7. Schematic of the Compressor Map

In essence the fractional change in work done by each rotor on the airflow
equals the fractional change in blade lift coefficient or angle of attack.
Furthermore, the required work increase can be related to the required increase
in compressor pressure ratio as indicated by Equation 11.

d(Ah ) Y - 1
= dRp

Th - 1 1-1 Rp- 
1 - Rp ¥

where 7 = ratio of specific heats = 1.4

Rp = compressor pressure ratio
p

Ah = rotor work increase

/d(Ah)

k~" )rotor



By combining equation (10) and (11) the increased blade lift coefficient
and/or angle of attack is found to be:

da dCL y - 1 dR (12)L C (12)a C
L Y
I¥ 1-y R

l - R P

The increased pressure ratio required of the compressor is the negative
of the change in inlet total pressure due to distortion, or

dRp/R = -dPT
2
/PT2 (13)

Combining this with Equation 12 produces the desired relationship between the
change in rotor lift coefficient (dCL), and angle of attack (d a), and the
inlet flow distortion (dPT2).

dCL da dPT2 (14)

*L = - - .XPT2
1-R

P

This result can then be combined with the effects of unsteady flow on the
stalling lift coefficient to establish the effect of distortion on the loss in
compressor stall margin.

Relate Inlet Pressure Distortion to Loss in Compressor Stall Margin. -
The procedure to establish the loss in stall margin is developed with the aid
of Figure 8. The steady state and dynamic rotor airfoil characteristic are
shown in Figure 8(a). The dynamic characteristics are typical of that pro-
duced by a circumferential distortion. The actual or instantaneous angle of
attack on the rotor and resultant lift coefficient are shown as the outer
ellipse. The maximum operating point is designated point C. The effective
angle of attack as defined in the unsteady analysis lags the instantaneous
angle and is shown as the inner ellipse with a maximum at point E.
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dCL -)/ Y dR

L 1 _ (l- y)/YCL 1 ,(- Rp I

a

8 (a) Airfoil Characteristic 8(b) Compressor Map

Figure 8. Transformation from Airfoil Characteristic to Compressor Characteristic

Equation 12 can be used to transform these changes in rotor character-
istics of a single stage to the map characteristics of a multi-stage com-
pressor. This relationship between the required change in compressor pres-
sure ratio due to distortion and the change in rotor airfoil angle of attack
is given by

( T-l)/y
a 0 (1-y)/Y

dRp
= f(Rp)

RP

dRp
Rp (15)

On a finite basis, assuming small changes, the airfoil characteristics can be

CL
Line

Line

Flow



converted to the compressor characteristics by use of Equation 15. The results
are shown in Figure 8(b). The-relationship between the effective and instan-
taneous Pressure ratios is given by

(Rpeff - Rpo) =
-Pinst - RpoJ

f(Rp) ( -eff - 0)

f(Rp)- (G inst - O )

The case of interest is where RPinst is a maximum.

Figure 8. Thus, Equation 16 becomes:

This occurs at point "C",

Rpeff - Rpo

Rpinst Rpo

RpE - Rpo

RPC - Rpo

aE - aC0
ao - a

0

0
(17)

Defining the compressor inlet and exit stations as station 2 and 3, respectively,
RPC can be established from the distortion level as follows:

RPC T3/PT2min= (PT3 T2)/(PTmin / T)

(18a)

PC =
1 - PT - PTmin

T

Defining the magnitude of distortion, Dist, as(fT - PT in/T),Equation 18(a)
becomes min

Rpo
(18b)

1 - Dist

Referring to Figure 8(b), the stall margin (SM) with distortion will be:

(SM)DIST = PB - PE

RPO

whereas stall margin with zero distortion is:

(SM)LEA
N
= Rp- Rpo

Rp0

(16)

(19a)

(19b)

19

RpO

RPC =



Therefore, the loss in stall margin (A SM) due to distortion will be the
difference of Equations 19(a) and 19(b) or

RpB - Rp0
A SM =PB P0

RPA

= RpE - RP0

Rpo

RpB -RPE

RPA
(20a)

For a sinusoidal variation in angle of attack, the ratio of the maximum effec-
tive to maximum instantaneous angle of attack is equal to f(k) as defined in
Equation 3. Therefore under these conditions Equation 17 can be written as

RPE - Rpo = f(k)(RPC -Rp0 )

This can be combined with Equation 20(a), resulting in the following:

ASIA = f(k) (ER %)
Rpo

The pressure ratio, Rpc, was related to distortion in Equation 18. Incor-
porating this expression into the above, the loss in stall margin becomes:

A SM = f(k)

Rp-

1-Dist
Rp0

A SM = f(k) [1-Dist

- Rpo

-1 I

By a series expansion of 1Dist SM can be written

A SM = f(k) (Dist + Dist 2 + -----)

The second term is small for reasonable values of distortion and the relation-
ship between the loss in compressor stall margin and distortion becomes simply:

A SM
Dist

a SM f(k)

T Tmin/_T f (21)

20



The loss in compressor stall margin can be established by use of Equation
21 for a 180 degree sinusoidal circumferential distortion pattern. Results of
this computation are shown in Figure 9 for T

1
= T2 and for various values of

the non-dimensional time constant. The abscissa has been modified to include
the number of lobes, n, in the circumferential distortion pattern. The graph
is thus generalized to enable the stall margin loss to be found for a com-
pressor of reduced frequency, kc = U c/2U and for single or multiple lobe
distortion patterns. This loss for several typical distortion patterns is
shown in Figure 10 for three assumed compressors having reduced frequencies,
kc, of 0.05, 0.10 and 0.15, respectively, and time constants r1 = 72 = 3.5.

1.0

.3.
" 4.

Z.01 .1 1.0

MODIFIED REDUCED FREQUENCY, k-nk "nu c/(2U)
c c

Figure 9 The Effect of Compressor Reduced Frequency
and System Time Constants on Loss in Normalized

Compressor Stall Margin

1.o0

1r72'3.5

Z'-

I .5 1 ·# .r .05

.10

P4 P,~~~~~~~~ .15

IIN

1/REV 2/REV 3/REV 4/REV

Figure 10 Tolerance to Sinusoidal Distortion for
Different Compressors



The difference in stall margin loss resulting from the assumption of first,
second, third or fourth order systems (i.e., solutions to a first, second,
third, and fourth order differential equations) is demonstrated in Figure 11.
This knowledge will be used later in comparison of analytical predictions with
actual compressor test results to obtain the proper time constants.

1.0

IN.

h

'.a

la

Z

r
<.:

I

2:

It.

(n

To

0

U
W

'-4

0
z.

.01 .10 1.0 10.0

REDUCED FREQUENCY, k-wc/211

Figure 11 A Comparison of a First, Second, lTird, and Fourth Order System
on Loss in Compressor Stall Margin

The loss in compressor stall pressure ratio resulting from arbitrary
(non-sinusoidal) circumferential distortion patterns is determined by use of
the Fourier Series techniques. A computer program has been developed to
mechanize the calculation and is documented in Appendix E. Square and rectan-
gular wave patterns can be evaluated by this technique. The loss in stall
margin for a 1800 square wave distortion pattern as opposed to a 1800 sine
wave pattern is shown in Figure 12. The results are shown in terms of a general



reduced frequency k which is equal to twice the product of the compressor
reduced frequency, k, the number of lobes in the distortion pattern, n, and
the time constant T. This type of presentation is valid only for the case
where 7

1
= = 2 = Results indicate that the square wave pattern will cause

a greater loss in stall margin than the sine pattern. However, a rectangular
pattern with a sharp edged profile cannot be realized with the mixing asso-
ciated with non-uniform flow. An estimate of the effect of this mixing on the
expected stall pressure ratio can be obtained by modifying the square profile
as indicated in the insert of Figure 12 and computing the loss in stall margin
caused by such a pattern. The effect of such modifications are also shown in
Figure 12.

1.0

z 

0

v.1
E.4 IAZ
H rI1

.1 1.0 10.

GENERAL REDUCED FREQUENCY, kg - 2nr(wc/2U) - 2nxkc

Figure 12 The Effect of Distortion Profile on Loss in Compressor Stall Margin

Although the analysis includes certain simplifying assumptions, it is

based on fundamentals of fluid mechanics and aerodynamics, such as the compres-

sor flow/work balance and the approximated lag functions which are known to
characterize the airfoil and hence stage response to unsteady airflow. The

analysis has shown that the stall margin loss is directly a function of the

23



distortion level ((PT - PTmin)/T), the shape of the distortion pattern and of
the compressor rotor reduced frequency, kc.

Application and Generalized Curves

The technique relating arbitrary circumferential distortion patterns to
the loss in compressor stall pressure ratio has been established. This analy-
sis has been computerized. Documentation and instructions for use of this
program is given in Appendix E. However, many inlet distortion patterns can
be approximated by standard patterns of sine or rectangular wave shape.
Furthermore, the loss in stall margin resulting from such distortion patterns
is basically dependent upon only the extent of the low pressure region, QL, the
rotor time constant, 7, and the rotor reduced frequency, kc. As a result, the
loss in stall margin associated with these patterns can be presented as a
function of these three variables, QL, r , and kc. Therefore a set of general-
ized curves have been compiled that can be readily used to estimate the loss
in compressor stall margin for these standard patterns.

The three basic distortion patterns utilized to compile the generalized
curves are shown in Table III. Applicable definitions and nomenclature are
presented in Table I as an aid in estimating the loss in stall pressure ratio
for those patterns defined in Table III. A means to approximate the compressor
reduced frequency is shown in Table II.

Table III is composed of two parts. The curves outlined in the first part
are completely general and can be used with a non-dimensional time constant
chosen by the user to establish, for example, the effect of different time
constants on a comparison between the analysis and a specific set of compressor
test data. The second part pertains to those generalized curves utilizing a
fixed non-dimensional time constant with a value of T = 3.5. It will be shown
in the Data/Analysis Comparison that this constant will produce a good match
between test results and the analysis. The specific curve applicable to a
given problem will depend on the distortion pattern and available information
on the non-dimensional time constant. Table III is intended to give the
required guidance for use of the specific curves, contained in Figures 13
through 16.

Comparison of Analysis with Test Data

A limited comparison between results of the analysis with test data was
conducted to add credence to the analysis developed herein, which is based
solely on theoretical grounds. A literature search was conducted and the data
limited to that readily available in published sources. Much of this data
lacks specific details and the reduced frequency of the respective turbo-
machinery has been estimated. A description of each test vehicle along with
the source of information and the reduced frequency is given in Table IV.

The data comparison is made assuming a single non-dimensional time con-
stant to be valid for all turbomachinery. In such a case the compressor

24



TABLE I

DEFINITIONS AND NOMENCLATURE

Distortion

SM

a SM

A SM /((PT - Tmin )/ T
)

n

k
C

N

c

U

k
g

DTip

Vax

= (PT -Tmin )/ T

= Stall Margin

= Loss in SM along a line of constant
corrected rotor speed

= Normalized Loss in Stall Margin

= number of lobes in distortion pattern
(Refer to Table III)

= Compressor reduced frequency = wc/2U

= Rotor angular frequency = 2 7 N/60

= Rotor RPM

= First stage rotor chord at the tip

= Velocity relative to the first stage rotor
at the tip

= Generalized reduced frequency = 2 ken

= Non-dimensional time constant*

= Rotor tip diameter

= Axial velocity into the rotor

* It will be shown in the Data/Analysis comparison that a system
having time constants 71 = r

2
= 3.5 is a good approximation for

all fan and compressor systems.
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TABLE II

ESTIMATING COMPRESSOR REDUCED FREQUENCY

Compressor reduced frequency is defined as:

k
c
= w c/2U =frNc/60U

With lack of specific data this reduced frequency can be estimated by

assuming axial inflow into the rotor. The reduced frequency is established

by use of the velocity diagram, with the following result:

c = c [ 1 - 1/2 ( 2 + Vax 4 
c Dtip [ URTR+ 7 URTR

High flow, high tip speed compressors will have a ratio of (Vax/U )2

on the order of 0.2. The approximate reduced frequency will then be

as follows:

k = .9 c/Dti p

The range of this parameter normally lies between .05 and .15.
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TABLE III

USE OF GENERALIZED CURVES TO ESTIMATE LOSS IN STALL PRESSURE RATIO

DISTORTION PATTERN
DESCRIPTION

DISTORTION PATTERN
SHAPE

NUMBER
OF
LOBES,n

LOW PRESSURE
REGION WIDTH,

0L

TIME

T 

ulti-lobe Sine'
ave

ulti-lobe Square
ave

ingle Lobe Square
ave

2ir

n

l
-_- Le 2i

n

ulti-lobe Sine
.ve *

ulti-lobe Square
ave *

ingle Lobe Square
ave *

2r
n

Le

2r

n

n 18 0/n

n 180/n

1 97

3.5 3.5

3.5 3.5

3.5 3.5

* This data incorporates the preliminary estimate of a universal non-dimensional
time constant.
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FIGURE
NUMBER

18 0/n

180/n

T T

7Tn

1
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sensitivity to distortion is dependent only on the rotor reduced frequency
as shown earlier (Effect of Inlet Pressure Distortion on Loss in Stall Pressure
Ratio). The comparison is presented in terms of the normalized loss in stall
pressure ratio in Figures 17 through 21 for the constant non-dimensional time
constant of 3.5. Without exception, the trends predicted by use of the analy-
sis are in very good agreement with results of the tests, and in many cases,
good quantitative agreement is obtained. (See for example Figure 20)

The non-dimensional time constant of 3.5 was assumed universally appli-
cable in the above comparison. As shown it produces reasonable agreement with
data and as a result is recommended for use during the development phase of an
inlet/engine program. However, the analysis also provides the mechanism to
improve data/analysis comparison once test data of production type hardware
is available. For example, the prediction shown in Figure 21 for T = 3.5 can
be modified by assuming a time constant, T = 2.5, bringing the analysis in
exceptionally close agreement with the test results as shown in Figure 22.
This further demonstrates the validity of the basic approach.

In conclusion, the impact of this inlet flow distortion analysis in the
area of inlet/engine compatibility could be substantial. A means is now avail-
able to carry-on compatibility studies prior to engine test. The analysis
identifies those inlet flow and compressor design variables most important in
the interaction of the inlet flow and the compressor. These are specifically
the inlet distortion profile and magnitude, and the compressor reduced fre-
quency. This latter parameter is directly dependent on the rotor chord which
emerges as a strong factor in the design of hardware for compatibility. There-
fore this approach can help to insure inlet/engine compatibility prior to hard-
ware commitment. Furthermore, the successful treatment of the problem by
fundamental aero-thermodynamic relationships can also put into perspective and
tie together the number of empirical distortion indices currently in use.

The favorable results of the data/analysis comparison are considered
verification of the fundamental hypothesis of the analysis; specifically that
distortion must be analyzed from an unsteady point of view. The accuracy is
also considered sufficient to justify the simplifying assumptions incorporated
in the analysis including the use of the overall compressor work balance rather
than a detailed stage-by-stage analysis. Additional comparisons with a few test
programs are recommended for refining the steady state analysis. The programs
should provide information such as the detailed distortion patterns, compressor
geometry and compressor operating conditions. However, the compressor model
has been developed to the point necessary for conducting the phase of study
designed to analyze the compressor reaction to unsteady turbulent flow.



TASK II
FLUID DYNAMIC MODEL OF TURBULENT INLET FLOW

Turbulent flow produced in an aircraft inlet system can result in
momentary total pressure distortion levels of a magnitude and duration
sufficient to cause engine compressor stall. The first attempt to identify
such instantaneous distortion levels was in terms of the Root Mean Square (RMS)
level and the Power Spectral Density (PSD) function of the total pressure
fluctuations. These statistical averages are relatively inexpensive to obtain.
However, no physical interpretation could be given such quantities and as a
result were of little value in the correlation of unsteady flow and compressor
stall. Presently, it is common practice to measure an instantaneous distortion
pattern at each instant of time by use of high response, highly (time) corre-
lated total pressure instrumentation. This requires complex and expensive
data measurement systems. While these instantaneous patterns graphically
demonstrate the existence of unsteady flow, only limited empirical correlations
of unsteady flow and compressor stall have been shown. The high cost of data
reduction severely restricts the quantity of data analysis that can be made to
substantiate any correlation. In addition, an empirical approach is inherently
weak since it does not provide physical understanding of the basic flow phe-
nomena. An analysis relating turbulent flow phenomena in the inlet to com-
pressor stall is required.

A fluid dynamic model of turbulent flow is developed herein as a means
of understanding turbulent inlet flow and as a practical tool for evaluating
flow properties through the use of the total pressure RMS level and PSD func-
tions. By use of this flow model, which is based on a combination of basic
fluid dynamic concepts and statistical analyses, a better understanding of the
mechanics of the flow is obtained. Consequently, the loss in compressor stall
margin may ultimately be related to the statistical characteristics of turbu-
lence.

The approach used to analyze this turbulent flow is outlined below and
presented in detail in the subsequent sections of the report. Turbulence,
normally measured in terms of velocity or total pressure, implies pressure
gradients exist in the flow. It is a fundamental of fluid mechanics that
pressure gradients can be supported by only two means: (1) pressure waves
traveling at (or above) the local sound speed and (2) by streamline curvature.
Since turbulence is produced by viscous phenomena, it is proposed that the
pressure fluctuations measured in an inlet are primarily supported by stream-
line curvature. To realistically model the flow, it is hypothesized that the
streamline curvature and resultant pressure fluctuations are caused by a
random distribution of discrete vortices being convected downstream by the
mean flow. This is illustrated schematically in Figure 23.

To obtain a mathematical representation of this flow model, a coordinate
system moving downstream with the mean flow is used and enables the individual
vortices to be analyzed in a steady frame of reference. Steady state flow
equations can then be applied to describe the flow field about an isolated
vortex. Analytical construction of the total pressure signature of this
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isolated vortex is accomplished through the superposition of the vortex flow
and the transport velocity. Consistent with the basic hypothesis, the turbu-
lent nature of the flow is assumed to result from a distribution of these
vortices having random size, strength, location, and direction of rotation.
The total pressure root mean square level and power spectral density function
resulting from this random flow field are found by use of statistical methods
as applied to the analysis of this stochastic process. This development is
followed by sensitivity studies to determine the impact of certain assumptions
on the results. In addition, results of the analysis are compared with test
data.

(e.- Uo

a Y

I _ PROBE

PT(t)

Figure 23. Hypothesized Turbulent Flow Composed of Random Vortices.

Isolated Vortex

The definition of the flow field associated with an isolated vortex is the
first step in the development of this turbulent flow model. The description is
based on a time dependent solution of the Navier-Stokes Equations. This vortex
and associated properties are used in the subsequent development of the fluid
flow model.

Solutions of the Navier-Stokes Equations of Motion. - Depending upon the
initial and boundary conditions, several vortex flow fields are found to be

:8
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solutions of the Navier-Stokes Equations. The details and the characteristics
of these solutions are presented in Appendix F. It was found that all steady
state solutions have singularities (infinite velocities) at either the vortex
center or outer extremity and therefore do not represent real flows. There-
fore, the time dependent solutions, each representing different vortex boundary
conditions, were examined. For a realistic flow, the solution must satisfy the
following boundary conditions: (1) the vortex must have a tangential velocity
of zero at both the center and at an infinite radius, (2) the velocity must be
continuous for all radii, and (3) the influence of the vortex must move outward
with time. The solution of the two-dimensional time dependent Navier-Stokes
Equations that fits these assumed boundary conditions is a vortex formed by an
impulsive start in an undisturbed flow. The normalized velocity field asso-
ciated with this vortex is given in Equation 22.

2

=n e 2 [(a) 2 (22)
Vmax a

where vQ = velocity in the 0 direction (cylindrical coordinate
system)

vgmax = maximum velocity of the given vortex at a given time

a = radius at which v
O
= vQmax

n = specifies direction of rotation, = 1 for counter-
clockwise and -1 for clockwise

The radius r = a at which the velocity is a maximum is considered the vortex
core radius. This core radius varies with time and as a result, the influence
of this vortex increases in the radial direction with time.

A complete development of this vortex is presented in Appendix H and
includes a description of the angular momentum, vorticity, circulation and a
discussion on the time of origin and decay of the vortex.

Vortex Description in Cartesian Coordinates. - In order to describe the
properties of the vortex in terms of a coordinate system fixed with respect to
the inlet it is first necessary to express the vortex properties in terms of
a Cartesian coordinate system fixed to the center of the vortex (x, y) as
opposed to the cylindrical coordinate system (r, Q) used for solutions of the
Navier-Stokes Equations. A description of the coordinate system used is shown
in Figure 24(a).

As developed in Appendix H the circumferential velocity is a function of
the radius and time and is given by Equation 23.

rBr (23)
Br -4 (23)

ve '-rA e
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(a). Vortex Model Cartesian Coordinate System
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4
r/a

(c). Vortex Static Pressure Distribution

Figure 24. Isolated Vortex Flow Field



where: B = constant depending on the vortex strength

v = kinematic viscosity

t = time since the vortex started.

However, due to the short period of time the vortex is in the field of interest
(the inlet duct) and the very slow rate of growth of the vortex, the time is
assumed constant. The vortex tangential velocity normalized by the maximum
velocity, which occurs at r = a, was given by Equation 22 and repeated below.
The variation of vg with r is shown in Figure 24(b).

- [(r/a) 2-1]
ve - n(r/a) e (22)

rOmax

The horizontal (u) and vertical (v) velocity components of the vortex
velocity are obtained by use of the description and definitions of the coordi-
nate systems of Figure 24(a). These are:

nYa) - [(x/a) 2+(y/a) 2l1]
u ' -~Vmax(Y/a) e

-½ [(x/a) 2+(y/a) 2-1 ]
v - ven(x/a) e (25)

The local flow angle is dependent on the velocity components, and is given by
Equation 26.

a - arctan (v/u) - arctan ( tan-) (26)

The static pressure variation with radius as determined in Appendix I is given
by Equation 27 and shown in Figure 24(c).

Pro =. 2 e - [(x/a)2 +(y/a)2-1]
Pr- 2 Vemax e (27)

where: Pr = static pressure at radius r

Po = static pressure beyond the vortex influence,
r>>a

P = density

The total pressure in the vortex flow field, based on a coordinate system fixed
to the vortex center, is equal to the sum of static and dynamic pressures or
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PT - Pr vo 2 (28)

In terms of the cartesian coordinate system, the total pressure is obtained by
combining Equations 22, 27, and 28 and is given by Equation 29.

PTpo -M P [(x/a)2 +(y/a)2-]vea e
- [(x/a)2 +(y/a)2 -1] (29)

Transformation of the Vortex Flow Field to the Inlet Coordinate System. -
The vortex flow field has been described in the coordinate system fixed to the
vortex center. The vortex, however, is moving downstream at the local average
flow velocity. To determine the total pressure as it would be measured at the
engine face, it is necessary to transform the vortex velocity field into the
coordinate system fixed to the inlet.

Allowing the vortex to move downstream at the local velocity, Uo, as shown
in Figure 25, the local instantaneous velocity components as would be measured
in a coordinate system fixed at the probe becomes:

(30)U - Uvvme x(/a e - [(X/a) 2+(Y/a) 2- 1

V - -ve(X/a) e - [(X/a)2 +(y/a)2 -1(V -emax(Xa 

Here, the upper case (X, Y) represent the position of the vortex center relative
to the origin of the fixed coordinate system located on the probe. In essence,
U and V are the velocity components at the probe due to a vortex located at
(X, Y). In this case, the transformation between the moving and fixed coordi-
nate systems is simply

X = -x
(32)

Y = -y

The static pressure in the fixed coordinate system is

- [(X/a) 2 +(y/a)2 -1]Pr -P Vemax e

(31)

(33)



VORTEX COORDINATE
SYSTEM

TOTAL PRESSURE PROBE

X

FIXED COORDINATE SYSTEM

Figure 25. Transformation of Coordinate Systems.

To account for the fact that the local flow angle at the total pressure probe
is not aligned with the probe, the total pressure as expressed in Equation 34
is assumed to be the local static pressure plus a corrected dynamic pressure.

PT ' Pr+naR(a)=2 (34)

where: Pr = static pressure (which is independent of coordinate
system)

W = the resultant velocity vector, (U2 + V2)1 /2

7IR = probe total pressure recovery

a = local flow angle

Since the vortex is moving downstream at velocity U , the position, X, of
the vortex center with respect to the fixed (probe) coordinate system is a
function of the velocity, Uo, and time, t. Thus:

x- Uot (35)

This implies that the origin of time must be chosen such that X = O when t = 0.

The total pressure recovery is assumed to vary directly by the square of
the cosine of the flow angle, a , at the probe.

nR l COB2 -U)2 (36)(j7
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Using the transformation of Equation 35, the total pressure recovery, and
the definition of static pressure (Equation 33) and velocity (Equation 30 and
31), the total pressure expressed by Equation 34 becomes:

PT-PTo= nPU 0 (-)e a (37)

+n 2
2 [(v/a)2 1] [(a a

where PT is the total pressure of the undisturbed flow and equal to

Po + p Uo2

Defining this delta pressure as A PT and normalizing by the dynamic pressure,

qo ' 2 Uo (38)

the total pressure becomes:

APT-. 2n(Vemx (Y/a) R- [(U 0 t/a) 2 +(Y/a) 21]
APT - 2n( UmX) (Y/a) e

0U0 (39)

+n (V)a [(Y/a)2- e

The resultant total pressure is a function of the time, t, the mean
velocity, UO, the strength of the vortex vGmax, the core size of the vortex
a, and direction of rotation, n. Detailed development of these relation-
ships are given in Appendix I.

Although these relations have been developed for a single vortex, they are
applicable to a series of vortices. These vortices can assume random values
of size, strength, location and direction. In such a case the vortex proper-
ties, a, vQmax, y, and n, become random variables. The techniques required
to treat these properties as random variables are developed in Appendix J.
These tools are then used in conjunction with Equation 39 to establish the
statistical characteristics (RMS and PSD) of the proposed flow field.

Statistical Flow Model

The model of turbulent inlet flow is hypothesized as being composed of
a random distribution of vortices, each having a specific size, strength,
direction of rotation, and location as shown in Figure 23. The total pressure



fluctuation created by each vortex is given in Equation 39. For a specific
vortex having a given set of properties, a, vomax, y, and n, Equation 39
signifies a single time function. However, each vortex has a different set of
properties; consequently, the flow field is composed of a family of time
functions. This family is called a stochastic process.

The autocorrelation function and its Fourier Transform, the power spectral
density function resulting from this process, are found in functional form by
statistical methods as applied to a general stochastic process in Appendix J.
These developments are applied to the vortex flow field to obtain the total
pressure autocorrelation and power spectral density functions of the turbulence.
The fluctuations in total pressure are also related to the fluctuations in
velocity by use of the flow model, providing an analytical means to relate,
hot wire anemometer velocity measurements and total pressure measurements.

Autocorrelation Function. - The autocorrelation function of the stochastic
process composed of the random vortices flowing downstream with the flux of N
per second can be summarized as follows.

The general total pressure wave described by Equation 39 can be repre-
sented by the following functional notation.

AP
T
= APT (a,v,Y,n,t) (40)

The autocorrelation function of this discrete total pressure wave is found by
means of the definition of the autocorrelation function and is given by

o00

R (av,v,(a,v.,Y= PT(a ,nt) APT(a,v,Y,n,t + t)dt (41)

_00

To establish the autocorrelation function of the entire family of waves, a
weighted sum of the function RAP (a, v, Y, n, T) is performed over all
possible values of a, v, Y, and n. T The weighting functions are the percentage
of vortices having a specific core size between a and a + Aa, specific strength
between vomax and vemax + Avemax, a specific location between y and y +Ay and
a direction of rotation (n = +1 or -1). These weighting functions are assumed
independent of each other, are simply the probability density functions of a, v,
y, and n, respectively, and are designated by the notation, p( ). The auto-
correlation function of the resultant total pressure wave (Equation 42) is there-
fore the weighted sum of the general autocorrelation function.

RAPT(r) = N I R ,v,Y,n,rT)P(a)P(v)P(Y)P(n)dndYdvda (42)

8V yn

The autocorrelation function of the vortex flow field, as measured at the
total pressure probe, is found by incorporating the total pressure wave
(Equation 40), the definition of the autocorrelation for a discrete wave
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(Equation 41), and appropriate probability density functions into Equation 42.
This substitution is accomplished in Appendix J and the resulting integral
equation is solved by numerical techniques. The particular probability density
functions used in this analysis are discussed in detail in Appendix K and out-
lined in Figure 26.

A computer program was written to evaluate the integral and the resulting
normalized autocorrelation function is shown in Figure 27. Although an abso-
lute autocorrelation function is directly dependent on the probability density
functions of the mean core size, a, and the mean vortex strength, VQmax, it
will be shown in the sensitivity studies this normalized function shown in
Figure 27 is relatively insensitive to the probability density functions used.

RMS Total Pressure Fluctuations: The mean square total pressure fluctu-
ation is identical to the autocorrelation function at a time delay, T , equal
to zero. Thus,

(2 A-PT2 " RAPT (0) (43)

For this case and using the assumed probability density functions (Figure 26)
with h = (1/2)H (probe at center of the duct) and &/H<<l Equation 42 can be
integrated in closed form to give

2
wen2 NH Vemax (Cm+2) r 2(mv+2) (44)

o UO H U ma+na+3) L(mv+nv+3 )

+ lie (m+2) (m+3 (m+) (m ) ]
32 (mv+nv+3) (mv+nv+4 ) (mv+nv+5)J

The mean square level is later used to normalize the power spectral density
function and utilized below to relate the velocity and total pressure fluctu-
ations.

Relationship Between Velocity and Pressure Fluctuations: The flow model
also provides a base from which other quantitative relationships can be
developed. By application of the statistical techniques developed herein, the
fluctuating velocity components defined by the isolatedyvortex, the auto and
cross correlations of the unsteady velocity terms (up vZ ,-uv) can be obtained.
The detailed development of these correlations are presented in Appendix L.
Briefly, the mean square axial perturbation velocity in the center of the
duct is:

U2 ewn2 NH Va (mA+2) (my+2)
vUO U2o? ( U (ma+na+3) (mV+nv+ 3 ) (45)
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NOTE: The probability density functions
are given in Figure 26.

0.8

t 0.7

0. 0.6

0.5

o 0.4

N

0.3

z

0.2

0.1

0 1.0 2.0 3.0 4.0 5,0 6.0

NORMALIZED TIME DELAY -T Uo / a

Figure 27. Autocorrelation Function Computed From The
Turbulent Flow Model.
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The relationship between the velocity fluctuations and the total pressure
fluctuations in a turbulent flow field is obtained by combination of Equations
44 and 45. This is:

u2/U 2 1
APT/q 2 411e (mv+3) (mv+4) (46)

16 (mv+nv+4) (mv+nv+5

For the velocity probability density function having the exponents mv = 4 and
nv = 14 (Refer to Figure 26 for the density functions) the ratio has a value of

2 = 0.238 (47)

APT/qo

It should be noted that for reasonable values of m. and nv, the numerical value
of Equation 46 is weakly dependent upon these variables.

Equation 47 can be written in terms of the mean Mach number, Mo, and total
pressure, PT, as follows and is shown graphically in Figure 28.

Y

2 APT2 2(1 + Y-1 M2 )y-1
ApT 2(1 2

= 0.238 2 2
U0 2 2 yM2U P YM

This result, in itself, is significant. For the first time a relationship has
been developed which will relate the fluctuating velocity as measured by hot
wire anemometry with the total pressure fluctuations. Previously, the relation-
ship was developed by assuming either sonic waves or a quasi-steady analysis
with a constant static pressure, neither of which represented the physical
process.

Power Spectral Density Function. - The power spectral density function is
the Fourier Transform of the autocorrelation. Thus:

S (f) R (T)e-j 2 fTdT (48)

where: S AP(f) = the complex power spectral density function,

R APT(7) = the autocorrelation function.
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Figure 2& Relation Between Velocity and Pressure Turbulence.

Of immediate interest is the real part which is the physically realizable
one-sided power spectral density function as normally obtained from test
data. This function G (f) is defined (see, for example, Reference 11) as:

Gu4f) - 4 RAt ()Cos(2wfT)dT (49)

The normalized power spectral density function obtained from the auto-
correlation function illustrated in Figure 27 is shown in Figure 29. The
spectrum is normalized by the mean square total pressure fluctuations, a 2, and
the mean vortex core size, a.

Sensitivity Studies

The effect of the assumed statistical distributions on the resultant
autocorrelation and power spectral density functions must be determined since

these distributions, in effect, describe the mean core size and mean strength.
The level and frequency content of the power spectral density function is
directly related to the mean vortex strength as measured by vmax/u , the mean
core size, a/H, and the shape of their respective probability density curves.
However, the normalized spectrum may not be sensitive to these variables, since
it is normalized by the mean square of the pressure fluctuations and the mean
core size. If this is the case, a great simplification in application will
result. It is the specific objective of this section to establish this sensi-
tivity.

While it was felt that the power spectral density function is primarily
dependent on the strength and size of the vortices, the effects of spin direc-
tion, n, and probe location, Y/H, were also investigated. The effects of these
variables on the power spectrum were found to be negligible.
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In the turbulent flow model, the vortex strength is represented by the

maximum tangential velocity. The distribution of vortices having various

strengths is governed by a Beta probability density function given in Equation

50:

P(vmkax) U, mv~vex~ U0 U0 / (1 Uo )

where

ve m + 1 r(m + n + 2)
max v v v
U m +2 and v r (m + 1) r (n + 1)
0 V V

The shape of this density function can be altered by changing the constants

mv and nv as illustrated in Figure 30. The effect of such changes serve only

to modify the mean square value of the fluctuating pressures and do not affect

the shape of the normalized autocorrelation or power spectral density function

as shown in Figure 31.

8 - : am, n, veax/U o

4,34,.125

6,20.\25

4 ~2,8,.25
" 9,.375

4,4,.50

VSmax/VO

Figure 30- Probability Density Function of Vortex Strength.

The distribution of vortices having various core sizes is also described

by a Beta probability density function as given by Equation 51:

P(a) k ()a ( Ha)na (51

where
- m +1

a a
H m +n +2

a a

r(ma + n + 2)
Ka 
a r(ma + 1) r(na + 1)

52
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Variations in shape of this function have some impact on both the amplitude of
turbulence and the autocorrelations and power spectral density functions.
Several variations used in the sensitivity study are shown in Figure 32. An
example of the effect of these variations on the autocorrelation and power
spectral density function is shown in Figure 33.

12 m, n, a/H

4,44,.1

3,35,.1

2,26, .1*

/-6 14..32
r! \ \! / lO,10 10 .5

0.2 0.4 0.6 0;.8 1.(

a/H

Figure 3 ..Probability Density Function of Core Size.

As illustrated in Figures 31(b) and 33(b), the normalized power spectral'density
function is independent of the mean value of the vortex strength vomax and the
shape of its probability density function and only weakly dependent upon the
mean vortex core size a and its probability density function. If these latter
variations are ignored for the moment, it is apparent that this normalized
spectrum along with particular values of the mean core size a and the mean
square of the pressure fluctuations C 2 can be used to calculate an absolute
PSD function (Gi~T(f) as a function of f).Furthermore, if the power spectrum

is normalized by a 2, the resulting absolute spectrum is only a function of a.

The importance of this result lies in the fact that the analytical spectrum
can be easily matched to experimental data using only the normalized spectrum
and the mean core size a. As an example of this concept the analytical model
was matched to the turbulence data from an axisymmetric mixed compression inlet
presented in Reference 12. The procedure for determining the mean core size
associated with this particular spectrum is given below and illustrated in
Figure 34.

1) Normalize the measured power spectral density function by the mean
square of the turbulence (a2 ).

2) Compute an absolute spectra (G -(f/ 2) from the normalized
spectrum obtained from the analysis by assuming various values of the
mean core size, a, and using the local velocity, U

o
.
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3) Compare the computed spectra with that obtained experimentally. The
mean core size producing the best fit with the data corresponds the
characteristic mean core size for the particular flow conditions.

As shown in Figure 34, the mean vortex core size producing the best fit under
the constraints of both the shape of the spectrum and the area under the spec-
trum ( 2 ) is 2.1 centimeters. The comparison shown yields excellent agree-
ment. Additional examples of test/analysis comparison will be discussed in the
"Data/Analysis Comparison" section.

As previously indicated and illustrated in Figure 33(b) the mean core size
and shape of its probability density function have a small effect on the normal-
ized power spectral density function. Therefore, depending upon the particular
spectrum used, this frequency shift in the normalized spectrum will result in
variations in the mean core size, a, obtained from the analytical model when it
is matched to experimental data. As a measure of the sensitivity of the com-
puted mean core size to the assumed probability density function, the computa-
tions summarized in Table V were made. It was assumed that the test data was
represented by the normalized power spectrum with the core size and maximum
velocity probability density functions corresponding to ma = 2, na = 26, and
mv = 4, n

v
= 14, respectively. This result is indicated by the asterisk in

Table V and shown in Figure 32. The frequency shift of the other normalized
spectra, caused by other assumed density functions, will thus cause a false
indication in actual mean core size. This error is given in Table V as Aa/a*.
As shown the maximum error is 25% and occurs for assumed probability density
functions yielding large values of a/H. For data indicating mean core sizes
greater than 30% it may be necessary to choose coefficients that give consist-
ent values of core size. This would require iteration. However, it is felt
that typical values of core size will be less than 30%, in which case the error
will be small and hence iterations will not be necessary.

Results of this sensitivity study indicate that for turbulent flow with
a/H < 0.30 the probability density functions of core size and maximum velocity
have only small impact on the overall turbulent flow model itself. This is
important to the use of the model eliminating two degrees of freedom that might
ordinarily have to be taken into account.

56



PROBE NO. 872

PT2/PTO - .877

UO - 80.5 m/s
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a - 1.07 cm

50 100 500 1000

Figure 34.

FREQUENCY - f, Hz

Comparison of Spectra Computed from the Flow Model with
Inlet Test Data of Martin (Reference 12).
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TABLE V
ASSUMED DISTRIBUTIONS ON POMER SPECTRUMIMPACT OF

ma "na i mv nv N max/Uo a I/i 

2 26 .100 2 8 .250 0

2 26 .100 6 20 .250 0

2 26 .100 8 26 .250 0
0 I I.0 u .10O ' 4 .250 -. 14

1 17 .100 4 14 .250 -.06

*2 26 .100 4 14 .250 0

3 35 .100 4 14 .250 .025

4 44 .100 4 14 .250 .055

2 2 .500 4 14 .250 .245

6 2 .700 4 14 .250 .173

6 14 .318 4 14 .250 .145

2 26 .100 4 34 .125 -. 003

2 26 .100 5 9 .375 .021

2 26 .100 4 4 .500 .056

10 10 .500 4 14 .250 .146

20 20 .500 4 14 .250 .145
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Scaling Law For Turbulent Flow

Inlet development universally begins with subscale testing. These test
results are then extrapolated to full scale to establish the expected inlet
performance. The technique to scale turbulence has, however, not yet been
defined, although dimensional analyses suggest that the power spectrum will
shift in frequency in inverse proportion to the actual scale size.

The scaling techniques have not been defined because of the complex nature
of random, unsteady flow. "Ever since the derivation of the momentum equation,
the fundamental problem of the analysis of turbulent flow has been that of
closing the system of governing equations. This is caused by the fact that
even in its simplest form the turbulent flow momentum equation contains a
"Reynolds stress" term made up of a correlation of the fluctuating components
of the turbulent velocity field which acts as an apparent stress. Since the
momentum equation is the governing equation for the mean velocity field, the
presence of this apparent stress term introduces additional unknowns into the
problem, and any equation derived without further assumptions to characterize
these unknown quantities will in turn introduce other unknown quantities. One
method of closing the system of equations is to formulate models for the tur-
bulent shear stress in terms of already known (or knowable) quantities"
(Reference 20). This formulation of models has classically been handled in one
of two ways--either some model can be postulated for the turbulent shear stress
itself, or, in analogy to a laminar flow, the turbulent shear stress can be
assumed to be given by some effective viscosity multiplied by a local velocity
gradient.

An attempt to develop a third, perhaps more fundamental model, was made
by use of the fluid dynamic model of turbulent flow developed in this program.
The model was used to define the "Reynolds stresses" in terms of the mean
turbulent flow properties, providing a third model for the shear stress.

This development is outlined in Part A below. The resultant set of
Equations could not, however, be solved for an arbitrary inlet flow profile
within the scope of the planned effort. Nonetheless, a specialized case is
given in Part B which may give some indication of the method of scaling the
turbulence power spectrum.

A. General Development: The longitudinal velocity is assumed to be
dominant in the following development and the flow velocity and static pressure
is defined in terms of a fixed value plus the perturbation value as indicated
below:

U = U
0

+ u

V = O+v (52)

P = P + AP

The initial velocity distribution in the x-direction serves as a boundary
condition. This distribution is shown sketched below:
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Utilizing the notation defined above the following
fied.

U

ten Equations can be identi-

Momentum:

au + u = -1 ap au
o ax ay p ax ax

(53)auv
ay

av - av - vu av+ v = -la __ av
O ax ay p ay ax ay

(54)

Continuity:

au_ + av 0 (55)
ax ay

Crocco's Theorem: As applied to a velocity change caused by an entropy gradient
in total pressure, Crocco's Theorem (See for example Reference 21, page 281)
relates the total vorticity, Nr , to the velocity gradient AU . This is:
is:

Nr -a Udu
- 2 Uhi xj

2

Fluid Flow Model: The remaining six equations are defined by use of the fluid
flow model developed in this program. The alternative Equation numbers refer
to their explicit definition as established elsewhere in this report.

6o

(56)



2
u = f(N, a, v0 (57)

max

V = f(N, a, Ve ) (58)
max

uv = f(N, a, v ) (59)
max

u = f(n, N, a, v0 ) (60)
max

v = f(n, N, a, v
e

) (61)
max

AP = f(N, a, v ) (62)
max

Similarly, the following ten unknowns are identified:

2 2
U, v, Ap, u , v , uv, N, n, a, v0 (63)

max

By solution of these ten equations, the unknowns u2 and a can be obtained as a
function of the initial velocity (distortion) profile. These quantities are
directly related to the total pressure RMS level and power spectrum as estab-
lished by Equation 46 and the techniques leading to the spectrum of Figure 29.
If it can be assumed that the inlet velocity (or total pressure) profile can be
scaled, the techniques for scaling RMS level and power spectral density func-
tion will result.

Solution of these equations for an arbitrary distortion profile was beyond
the scope of the planned program. However, some insight can be gained into
scaling of the power spectrum by application to a specialized case.

B. Specialized Velocity Profile: Consider flow in a two dimensional duct
that has a non-uniform total pressure and hence velocity profile. As estab-
lished from fluid flow model, a gradient in velocity will occur if the vortices
have a non-uniform distribution of direction of rotation, e.g., more vortices
having a positive spin than negative spin. The general expression for this
gradient is given by Equation L-13 in Appendix L.



2 2
1 h 2 1 H-h

u-= n(.UNH 1/2 (mv +1) 41 1 2(

U 
0

0(m +n + 2) [ )

L-13
m +2 n
a a

[a a H

Equation L-13 can be integrated in closed form at the duct walls, h = 0 and
h = H, by assuming a/H<<l. This results in

v 6 -2
U NH ()1/2 max a (6)

U|-n (NH) (2,rre) ( ) ()(64)

h=H 

v2
e --2

u NH 1/2 max a
U| n (U. (2Te) U

2
() (65)

h=0

This will enable the maximum difference in velocity across the duct to
be established. The total vorticity flux is dependent only on this differ-
ence and hence for the purposes of this example it is not nexessary to obtain
the velocity profile between h = O and H, which would require numerical inte-
gration of Equation L-13. However, it is for this special case of interest
that the scaling technique will be defined which is valid only for the velocity
profile implied in Equation L-13.

The absolute value of vorticity passing between h = O and H can be com-
puted by use of the flow model as in Appendix H. This flux of vorticity
becomes:

V e

Nr = n 8r NH Uo e- 1/2 ) ( max (66)
' U

0

However, this flux is related to the change in velocity across the duct by
Crocco's Theorem, Equation 56, which in turn is obtained by combining Equations
64, 65, and 66. By so doing it is found that a/H is a constant (within the
confines of the velocity profile described by Equation L-13).

Since the power spectral density function is directly related to the
mean vortex core size, this result specifies that increasing inlet size would
shift the spectrum in inverse proportion to the inlet scale. This result would
verify the present practice of scaling the frequency content of the turbulence
power spectrum inversely with the inlet scale size. Again, this applies only
to the specialized case.
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Data/Analysis Comparison

The power spectral density functions of turbulent flow computed from this
turbulent flow model were compared with data obtained from Reference 12 for a
test of a .55 meter diameter, Mach 3 mixed compression axisymmetric inlet. The
comparisons were performed to illustrate the technique of determining the mean
turbulence scale size, verify the assumptions incorporated in the turbulent
flow model, and to gain insight into production of turbulence by interpretation
of test data through use of the model.

The experimentally determined power spectra used in the comparisons are
shown in Figures 35 and 38. The mean core size of the turbulent flow was com-
puted for these spectra by assuming a mean core size and comparing the test
data with results of the turbulent flow model. These comparisons are shown
in Figures 36 and 37 and Figures 39 through 44. Excellent agreement is
obtained indicating the turbulent flow model accurately represents the real
case and that the flow can be modeled by the assumption of random vortices with
the indicated mean core size.

Data from probe number 900 (Figure 36), which is in the inlet duct exten-
sion, approximately 3-1/2 diameters downstream of the inlet diffuser exit
(Figure 36) shows some disagreement with the analysis at the higher frequencies.
However, if it is assumed that this scatter is created by turbulence from two
separate sources each having a different mean core size, a composite spectrum
can be constructed incorporating the two different mean core sizes. This com-
posite spectrum is shown compared with data in Figure 45. Excellent agreement
is obtained. This not only adds credence to the turbulent flow model but allows
concrete interpretation of the power spectra. For example, it can be postulated
that the source of the turbulence having the scale size of approximately
a = 2.0 cm. at the compressor face probe 872 may be produced by shock boundary
layer interaction. This turbulence carries through to the inlet duct extension
(probe 900) but is reduced in size to approximately a = 0.8 cm., as indicated
in the composite of Figure 45. However, a new source is identified by intro-
ducing of turbulence having the scale size of 2.9 cm. which may be attributed
to the wakes generated by the centerbody support struts.

As a second, perhaps more significant example, consider the data of Figure
39 (Probe 872) in which case the total pressure recovery was 88% and the mean
core size of the turbulent flow 2.14 cm. As the inlet is operated at increased
supercritical margins (increased terminal shock strength) the power spectrum
changes as shown by the data in Figure 44 for a recovery of 57%. -A composite
spectrum for this supercritical case was computed from the turbulent flow model
and is shown in Figure 46. It indicates the flow is composed of eddies having
a mean core size of 1.9 cm plus additional turbulence having a mean core size
of 5.0 cm. This may be indicating large scale separation is occurring and the
turbulence is not only increasing in strength but in size as well.

Comparison between the power spectrum as established from the analytical
model and that obtained from test data shows exceptional agreement giving
considerable credence to the development outlined herein. With this model the
total pressure power spectrum and root mean square level of the total pressure
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fluctuations take on considerable significance. It is specifically the
strength and size of these low pressure regions, derived by application of the
model, that are important in the inlet flow/engine interactions.
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Figure 39. Comparison of Spectra Computed from the Flow Model with
Inlet Test Data of Martin (Reference 12).
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CONCLUSIONS AND RECOMMENDATIONS

The analytical developments reported herein provide a fundamental approach
to the problem of inlet/engine compatibility. With further development, this
approach will provide a method of evaluating inlet tests and engine designs
early in the propulsion system development cycle. Ultimately, it shows promise
as a method for predicting and evaluating the effects of distortion and turbu-
lence on engine stall characteristics, prior to system test.

The following are the more significant conclusions arising from the work
to date and suggestions for continued activity to achieve the basic program
goal: establishing the fundamental relationship between inlet distortion and
turbulence and loss in compressor stall margin.

Conclusions

(1) The effect of circumferential total pressure distortion on the loss
in compressor stall margin has been established analytically. The analysis has
shown that the stall margin loss is directly a function of the distortion
pattern, the distortion level ((Pt - Ptmin)/ t), and of the compressor rotor
reduced frequency, k =wc/2 U.

(2) The rotor'chord is the principal design variable in the reduced
frequency, k, and therefore emerges as a significant engine parameter in
design for compatibility.

(3) Favorable comparison of distortion and engine stall data with analysis
results is considered verification of the fundamental hypothesis of the
analysis. Specifically, a circumferential total pressure distortion will result
in an unsteady flow over the rotor blades requiring these unsteady aerodynamic
effects to be included in the stage characteristics.

(4) The accuracy of the stall prediction technique is sufficient to
justify the simplified approach which considers an overall compressor work
balance rather than a detailed stage-by-stage development.

(5) A phenomenological model of turbulent flow typical of that found in
aircraft inlets has been developed by combining statistical techniques with
the basic laws governing fluid dynamics. The power spectral density function
and root mean square level of the fluctuating total pressure take on consider-
able significance as a consequence of the model resulting in a means of
determining the strength and extent of time variant low pressure regions.

(6) Favorable comparison of spectra obtained from the analytical model
with test data of a Mach 3 mixed compression inlet verify the Turbulent Flow
Model.

(7) The agreement with test data for both the Compressor Analysis and
Turbulent Flow Model strongly suggest that compatibility problems, heretofore
only attacked by empirical methods, are amenable to analysis.

77



Recommendations

(1) Both the Compressor Analysis and Turbulent Flow Model are considered
developed to the point necessary to initiate the program to achieve the long
term goal of establishing a fundamental relationship between both inlet dis-
tortion and turbulence and compressor stall margin loss.

(2) Further comparisons of the compressor analysis with test data are
recommended for refining the method. The data used should provide the detailed
distortion patterns, compressor geometry and compressor operating conditions.

(3) Additional analysis of turbulence data from a well documented inlet
test program should be conducted to demonstrate the use of the turbulent flow
model in isolating the source of turbulence and establishing turbulence decay
characteristics.

(4) Finally, the developed relationships between distortion, turbulence
and loss in compressor stall margin should be compared with data from an
aircraft flight test program to verify the analysis.
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APPENDIX A

Analysis of Unsteady Potential Flow on an Airfoil

This appendix contains a detailed discussion of the physical mechanisms
effecting the interaction between an airfoil and the surrounding unsteady flow.
The effects of unsteady airflow or airflow motion on an airfoil below the
stalling angle of attack are explained in terms of the physical mechanism in
part A and then related quantitatively with the governing mathematical rela-
tionships in part B.

A. The Governing Physical Mechanisms. - Lift on an airfoil is a conse-
quence of the unequal pressures acting on the upper and lower surfaces. In
potential flow these pressures along the surface of an airfoil can be computed
from the velocity field by use of the equations of motion. The result of a
potential flow solution, with zero circulation, about a flat plate of length,
'c", and inclined to the stream at an angle,d ,would yield stream lines similar
to those sketched in Figure Al.

Figure Al: Potential Streamlines Around an
Airfoil with no Circulation

The required boundary condition is that of zero flow through the plate. This
is equivalent to the plate being a streamline which by definition implies zero
cross flow. The lift on the airfoil is given by Equation A-1 and is designated
as the non-circulatory lift, LNC. Although the lift component is zero for
steady flow, it can be non-zero under non-steady conditions.

C

LNC - o (PU - PL) dx (A-l)

To bring this mathematical model into agreement with experience it is
necessary to move the rear stagnation point aft to the airfoil trailing edge
(Kutta condition). This can be accomplished by imposing a circulatory flow
around the airfoil as shown in Figure A2.
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a+~~~~~~

NON-CIRCULATORY FLOW PURE CIRCULATORY FLOW COMBINED FLOW

Figure A-2. Flow About an Airfoil with Circulation.

By so doing an equal circulation of opposite sign is shed from the airfoil such
that the sum of the two is zero. The circulation about the airfoil imparts an
additional velocity field around the airfoil and must be accounted for in
obtaining the total lift. This additional lift is directly proportional to the
amount of circulation r required to move the stagnation point aft to the
trailing edge and is given by Equation A-2.

LC - pur (A-2)

This in turn is related to the angle of attack, a, of the airfoil by

1 2
LC ' pUor - 2a(r(pU

o
2 )c

wherer - nUoca

(A-3)

(A-4)

Total lift is therefore composed of two terms each caused by imposing a boundary
condition:

L - LNC + LC (A-5)

where C is of non-circulatory (potential) origin and is a consequence
of the requirement for zero flow through the plate

and LC results from the circulation required (Kutta condition) to move
the rear stagnation point to the trailing edge.

In steady flow and as indicated by the symmetry of Figure A-1, the lift
due to non-circulatory flow is zero. Thus, in steady flow the total lift is
approximated by the circulatory term,

L - LC ' (~pU2)c 2wa (A-6)
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For unsteady airfoil motion, however, inertial forces due to the finite
mass of fluid that is forced to adjust cause the non-circulatory lift to be
non-zero. As an example, consider the resultant lift due to oscillatory
vertical translation and pitching motion (about the mid chord) of an airfoil:

C2LNC - fP W [y + Uc] (A-7)

where wp , is termed the virtual mass per unit span associated with the
vertical acceleration y and/or U(. It is equivalent to the mass of a cylinder
of fluid with a diameter equal to the airfoil chord.

In addition, for any change in motion of the airfoil a trailing edge
vortex must be shed to force the stagnation point to remain at the trailing
edge. This adjustment requires a finite time and it too contributes to the
resultant airfoil lift. The vortex shed is non-recoverable and might be
considered as a dissipative or damping force. For the case mentioned above
the lift of circulatory origin is:

LC - ipUcC(k) [j + Ua + c a ] (A-8)

Combining equations A-7 and A-8 the total lift for an airfoil undergoing
oscillations in the vertical direction and along the pitch axis is as follows

*L - ffp S + U&]I + rpUcC(k)[y + & + ] (A-9)

For a general treatment of non-steady airfoil/airflow refer to References
18 and 19.

B. The Governing Equations. - The pressure forces due to unsteady flow
acting on the isolated airflow discussed in Part A will be quantitatively
described below. This will be important in developing the effects of unsteady
flow on the stalling airfoil lift coefficients in subsequent sections.

Airfoil lift in unsteady airflow is dependent upon three prime factors:

1. The type of motion occurring. This can be classified by the
following:

(a) Airfoil unsteady - freestream airflow steady
(i) Airfoil undergoing vertical translation

(ii) Airfoil undergoing horizontal translation
(iii) Airfoil exhibiting pitch oscillation

(b) Free stream airflow unsteady - airfoil steady
(i) Airflow with vertical gust
(ii) Airflow with horizontal gust

2. The type of input, e.g., sinusoidal, step, arbitrary, etc.

3. The times associated with the disturbance compared with the airfoil
"time constant".

Unsteady lift equations for the various classes of motions are summarized in
Table A-1.
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As indicated by the response functions in Table A-1, the change in lift
characteristics is delayed in response to instantaneous change in airfoil angle
of attack or flow velocity. The two physical mechanisms causing delay are
found to be:

1. inertia of the mass of air requiring adjustment and

2. the finite time for the trailing edge vortices to be shed and cause
adjustment with the flow field leading to a damping of the unsteadi-
ness.

These phenomena are analogous to a damped mass/spring system which can be
described by a second order differential equation, such as:

m dz + d + c2x - f(t) (A-10)

where: m = mass

c
1
= damping factor

c2= spring constant

An unsteady flow field about an airfoil will most likely be composed of a
combination of several of the above motions. Nevertheless, each of the above
motions can be approximated by a second order differential equation and the
composite flow field modeled by a general second order equation. This response
of the airfoil to these motions in unstalled flow will form the basis upon
which to develop the phenomenological model of an isolated airfoil subjected
to angle of attack excursions beyond the steady state stall limit, and ulti-
mately to represent the phenomenological model in usable, mathematical terms.
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APPENDIX B

Solution of the Differential Equation for the
Effective Angle of Attack

The effective angle is related to the instantaneous angle of attack
through a second order linear differential equation. The differential equation
is solved below for step, ramp, and sinusoidal changes in the instantaneous
angle of attack. LaPlace transform techniques are utilized in the solutions.

In terms of dimensional time, t, and dimensional time constants, t1 and t2
the governing equation is

d (aff

dt

- a) + (L +t d (a
t 2 eff

1
- a0) + tt 2 (aeff - a)

1l 2

1
(a - a )

t 1 t 2 inst 0

It is convenient to non-dimensionalize this equation by the airfoil velocity,
U , and chord c. A non-dimensional time and time constants are defined below:

T = tU/c

T1 = t 1 U/

2= t2U/c

Employing these definitions Equation B-1 becomes:

d2

2 (aeff
d-r

- ac) + (1 -- d (e ff
1 2

- Ca) + T (aeff aO)
12 ffa

1
rl 

2
(r inst

- a)

This is identical to Equation 2 in the main text. Equation B-2 is a linear
second order differential equation, is conveniently solved by LaPlace Trans-
form techniques and is represented in the LaPlace domain as:

L (aeff - a )

L (ainst - ao) (1lS+ l) (T 2

where T (s) = transfer function

and s = LaPlace dummy variable
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The effective angle of attack can be obtained for simple changes in the
instantaneous angle of attack, ainst - a o, by the method outlined below:

aeff - =eff o L -1 {L(a ff- a)} L -1{ (ainst - ao) x T(s)}

For example, assume that the instantaneous angle of attack, a inst,
increases as a step function of time as shown in Figure B-l.

L (ainst - ao)

aeff - ao

1

- 1= + 1 
s (s T1 + 1) (S T2 + 1)

aeff - o
a - a
inst o

11+ 1 [ -
e

-
T/T

T -T [Te 1-
2 1

] (B-5)2 ~~~~~~~(B-5)

The effective angle lags the instantaneous angle as shown below.

a

1.0

0.5

I

u 0
2.0 4.0

DIINKSIONLZSS TDM, t - tU/c

Figure - Iesponae of EffectiLe Angle of Attack to a Step'Chanse

The actual shape of the a eff curve will depend on the system time constants,
VI and r 2 , as indicated in (B-5).

As another example the effective angle is found for a ramp input in a inst,
with a ramp rate of increase, dca = constant = c1 .

dt
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L (ainst - ao)

C1
aeff ao =L1

eff - o

s2(ST1 + 1) (sT2

2

c1 z
2

- Z1

+ 1)

2
1 -T/T

e I+T- - 2
z2 - T1 2

An arbitrary variation in the instantaneous angle of attack can be repre-
sented by a Fourier Series as discussed in the section "Extension to
Arbitrary Variations in Angle of Attack." A Fourier series utilizes the sum of
sine and/or cosine waves to approximate the variation. Solution of the differ-
ential equation (Equation B-2) for a sine wave will therefore allow solution
for arbitrary instantaneous angles of attack. This solution follows:

ainst ao = Aainstsin(wt)

sL (a it C a) = 2 2

-1 -a 

ef o- a = (ST
1
+ 1) (ST2 + 1) (s +d )

a -a
eff o

A ainst

2k

1I2

e-T/T1
+

-T/T2

12 )(2
+ 4k2)

+

2k 4k
2 ( 1

sin (2kT - %)

+T 2 )+ ( 
T2 J .

1T2 4k )

Tl (B-6)

}

where k = (o/2
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The exponential decaying terms are neglected for periodic motion, simplifying
the amplitude of the sine wave results in

sin (2kT - ~)

(1 + 4k T12) (1 + 4k T2
2
)

The amplitude of the sine wave is noted
Figure B2. The phase shift is

m = tan- 1 (2k) + tan-
1

(2kT2)

= f(k) sin (2kT --) (B-8)

as f(k) for convenience and shown in

(B-9)

-. 10 1.0

Reduced Frequency, k -cwc/2U

Figure B2. f(k) vs Reduced Frequency for Several Values of T2.
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APPENDIX C

Increase in Airfoil Maximum Lift Coefficient for
Unsteady Flow Test Data

A limited literature survey of the effect of unsteady flow on the maximum
lift coefficient of an airfoil was conducted to establish an estimate of the
time constants associated with airfoil stall in unsteady flow.

Available data were for a ramp rate of increase in angle of attack defined
as an increase in angle of attack at a rate = d ca /dt = constant. The lift
coefficient achieved at stall with this type of unsteady motion was found to
be greater than that achieved with steady flow. This increase, A CLmax, is
shown in Figure C-1 as compiled from several sources.

Solution to the governing differential equation, Equation 2, for the ramp
rate of increase was given in Appendix B. The analysis is dependent on the non-
dimensional time constants r1 and r2. Based on a comparison between compressor
component data and the analysis it was established that by setting the two time
constants equal, 7 1 = T 2, the best match between data and analysis could be
achieved. For this reason, analytical results are shown compared with the
data in Figure C-1 for values of ~1 = T2 = r= 2.0 and 3.5. The comparison
indicates time constants on the order of 3c/u are representative of the
interaction between the unsteady flow and stall.
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APPENDIX D

Relating Inlet Distortion to Rotor Blade Lift Coefficient

The objective of this Appendix is to develop the relationship between the
change in rotor blade lift coefficient required to perform the increased com-
pressor work and the inlet distortion. Since a multistage compressor is built
of individual stages having similar characteristics, the effect of a change in
maximum angle of attack of one stage will therefore be similar to the response
of the next stage and derivatives or influence factors should be similar. The
procedure will be to equate the change in work (due to distortion) done on the
airflow to the change in work done by the rotor blade. From this equality will
come the relationship between CL and pressure ratio which can be evaluated in
terms of the operating point and the total pressure distortion.

Change of Work Done on the Air. - The compressor work per unit time done
on the airflow is:

AE = w Ah pA UAh (D-l)
a x

where Wa = airflow = PAxU

A h = ideal compressor total enthalpy increase

(A E) = increase in energy of the air per unit time.

Ax = flow area normal to the axial direction

U = axial velocity

Consistent with the parallel compressor model which is based on a uniform
compressor exit pressure, inlet total pressure distortion will require a change
in work done on the air to maintain this uniform exit pressure. The change in
work can be written:

· ' dA

(D-2)
AEI P Ax U AhAE J x

This change of work done on the air must be balanced by the change in
work done by the rotor.

Change of Work Done by the Rotor. - The rotor work is as follows:

ERTR = 2 PvR ARTRURTRCL (D-3)
ERTR 2 R ARTRURTRCL
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where ERT
R

= work per unit time done by the rotor

VR = air velocity relative to the rotor

ART
R

= rotor area = chord X unit span

URT
R = compressor blade velocity

CL = rotor lift coefficient

The useful work done on the air by the rotor will be somewhat less due
to the finite efficiency. Thus:

ER = nER

(D-4)

ER
=1 PV2
2 PVR ARTRURTRCLn

The change in useful rotor work required by distortion is therefore:

d(ER)

.E
ER

dp + 2dVR

P VR

dARTR

ARTR

dU
+RTR
URTR

dCL dn
CL nL

(D-5)

Equating the Change in Work. - Since the useful work done by the rotor
must be equal to the work done on the air equations (D-2) and (D-5) can be
equated:

dp dAx dU +dAh d 2d R+ A + Ah +
p A U Ah P VR

dARTR

ARTR

dURTR
+ U

RTR

dCL dn
C nrlL

Since the rotor area, the axial flow area, and speed remain constant, and
assuming the change in efficiency due to distortion is strictly a secondary
effect and therefore negligible, the equality reduces to the following:

dU dAh 2dVR dCL (D-6)
U+ dAh' +V C- -~=h VR L

It remains to find a relationship between dCL, dU, and dV
R
.

established from the typical stage velocity diagram.
This can be
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Velocity Diagram. - In the compressor mid stages, the stage stator exit
angle will be to a first order independent of distortion around the circum-
ference. Making this assumption the velocity into the following rotor will be
as below:

\ \ \ \ \ Stage n-l stator row

Stage n rotor cascade

r = a + 8. = constant

tan B = tan (r - a) = U/URTR

.'. U = U tan (F - c)

Taking the derivative of U

dU = -URTR (1 + tan2 (r - a)) da

and

dU ( -a a tan (r - a) da_
U (\tan (r - a) 1 ) a

Similarly:

VR U (cos (r - a))-1R RTR

= URTR ( cos (r - a) -2 sin (r - a))da

dVR = - a tan (r - a) da
V a
R

(D-7)

dVR

(D-8)
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Recall:

C
L

= 2 a

and

dCL da

CL a

Using these relationships equation (D-6) becomes:

[tan ( - - a tan (r - a)t an (T - et ) 1
J

da dAh+ dAh =
a Ah

- 2 atan (r - a) d +
a a

Combining terms:

d [ - adec C tan (F - c) + a tan (F
a n r 0 - a)J-1 + dAh

Ah'
0

Typical flow angles (r - a
attack of 12 degrees.

) are 35 degrees (Reference 13) and angle of

tan 350 = .7

a = 120 = .21 radians

d[ .15- l =
dAh
Ah

In essence

dU dVdU 2 R 2
U VR

dAh - da
Ah a

dC
L

CL
(D-9)

The additional required work comes from
(or lift coefficient). This additional
distortion.

an increase in blade angle of attack
work must be related to the inlet flow

Compressor Work and Inlet Distortion. - The average work done by the
compressor on the airflow remains constant. However, that section of the
compressor operating in the region of low inlet total pressure must increase
the pressure ratio to pump the flow to the uniform compressor exit pressure.
It is assumed that this additional work is divided evenly among the compressor
stages and the stage work, " A (A hi)," can be related to the required increase
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in overall pressure ratio as shown below:

Ah. = C(T - TT 
P Ti Ti-1

ith
- stage work

TTi = total temperature at
compressor stage

the exit of the i
t h

I I I 
TTi_-l = total temperature at the in:

stage
(exit of ((i - l)th) stage)

let to the iu- '

The c]

dahi CpdTT
i

Ah
i

Cp (TTi - TTi_1 )
ha!nge in overall work is t

n
z d(Ah.)

d(Ah) i=1
Ah n

i Ahi
i=l

Since dAhi dC

Ahi CL

therefore given by Equation D-ll.
n d(Ahi) Ah

Ah.
i=l .

n

i=l
Ah

Equation (D-ll) becomes:

n d
CL Ah.

C n
d(Ah) i=1 CL n Ahi dCL/C L
Ah n n Ah.

E Ah 1
i=l i

therefore

d Ah dCL

Ah overall L stage

where Ahi =
1

(D-10)

and

(D-11)

and

(D-12)

(D-13)
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Thus it is shown that the overall increase in compressor work is related
directly to the increase in airfoil lift coefficient of a single typical stage.
By assuming this additional required work is divided evenly among the com-
pressor stages the required increased work can be equated to the required
increased pressure ratio as developed below. The overall compressor work,
assuming an efficiency of 1Oo, is given by:

TT3

Ah = C (TT- TT2) C T (-- 1)

[(P T 2

CTT

Taking the derivative the following results

d (Ah), 1
d~nh~dRP CP ·T2 ( Y- ) P -1 (D-14)

dR CTT ~dRTherefore

d(ah) ( dR (D-15)
h ry-1 R

1 -(R ) Y P

where Rp = overall compressor pressure ratio = PT3/PT2

By combining equation (D-13) with this result the relationship between the
increased pressure ratio and required blade lift coefficient is derived.

dC r-1 dR
dCL dAh Y p (D-16)

CL Ah y-l R
1 -R y

Realizing that the increased pressure ratio required of the compressor is
the negative of the change in inlet total pressure, (distortion)

dR dPT2
-- T (D-17)

T2

equation (D-16) produces the relationship between the stage lift coefficient
(dCL) and the distortion (dPT

2
) as given by Equation D-18.
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da dCL

a CL

y-1
Y

1 - R (l-y)/y
P

dPT

T 2

22
(D-18)

This result is combined with the effects of unsteady flow on the stalling
lift coefficient to establish the effect of distortion on the compressor stall
margin.
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APPENDIX E

Computation of the Loss in Compressor Stall Margin

Computer Program Description

I. ABSTRACT

A computer program has been written to calculate the loss in compressor
stall margin due to inlet steady-state circumferential total pressure dis-
tortion. The program is written in Fortran IV and is operational on the LTVAC
CDC 3300 computer. The mechanics of the program are discussed below, and a
program listing included. Input instructions and examples of the input and
output are given.

The program input is the circumferential total
can be of arbitrary shape. A Fourier Series is then
the coefficients are modified by a transfer function
in dynamic airfoil stall of the rotors. The loss in
then calculated as an output.

pressure profile which
fit to this profile and
to account for the delay
stall pressure ratio is

II. FORMULATION

A. Mathematical Description

1. Distortion Amplitude

The distortion amplitude is defined from the input total pressure
field as the difference between the average and the minimum pressure divided
by the average pressure (Pt - Ptmin)/Pt. The distortion amplitude is used to
normalize the calculated loss in stall margin.

2. Fourier Series

arbitrary
indicated

The technique of predicting stall pressure ratio loss for
distortion profiles utilizes Fourier series fit of the profile as
below.

PT(e) = a + E
n=1

00

a cos (nO) + E b sin (ne)n nn=l
(E-1)

PRECEDING PAGE BLANK NOT FILMED
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where

Pt(8) = total pressure as a function of circumferential position,

n = harmonic number
Tr

= 1
a PT P,()de

an = -PT(8)- cos (nO) de (E-2)
- Tr rr

1
bn I P T() sin (nO) dO

-Tr

The Fourier series can also be represented by sine terms. This
will facilitate calculation of the loss in stall margin as will be shown later.

Let

a = c sin (4n) Cn
an

bn = cn cos (pn) an

c = a + b bn
n n n

-1
= tan (an/bn )n nfl

Then

a cos (nO) + bn sin (nO) = c sin (ne + 4n)

The series is thus written as

PT(9) 0 c
T = 1 E- _ -n sin (nO + 4n)

PT n=l PT (E-3)

where the minus sign is the result of a change in the limits of
integration from, -7-to Tr , to 0 to 2 T.
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3. Compressor Loss in Stall Pressure Ratio for Arbitrary Distortion
Profiles

The technique to establish the loss in compressor stall margin
is fully described in the section of the main text entitled "Compressor
Analysis." Briefly, loss in stall margin is defined with the aid of the fol-
lowing figure which represents the process on a steady state compressor map.

B dt w St&U La

Operat in Line

/o.lov

The "clean" stall margin is defined as

R - R
PB P 0

SM = 
R

p0

(E-4)
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The stall margin with distortion is defined as

R - R
PE PO

SMDist = R (E-5)
P 0

The loss in stall margin is thus the difference between these
two equations:

R - R

PE; PO (E-6)
R
PO

This loss in stall margin is normalized by the distortion level
as defined in Equation E7

Dist = (PT -PT )/P T
(E-7)

min

resulting in a normalized loss in stall margin, Equation E-8.

ASM (E-8)

(PT PT .)/PT
min

The technique to compute this normalized loss in stall margin
due to an arbitrary inlet distortion profile is briefly as follows:

(1) The input distortion profile is represented by a Fourier
series.

(2) The response of the compressor to this pattern is equal
to the sum of the response to each of the components of the Fourier series.
This is computed by the program.

(3) The highest compressor stall pressure ratio, during a
complete revolution of the rotor, is used to compute the loss in stall margin.

B. Program Input

1. The program is designed to compute the normalized loss in stall
margin assuming a second order response with the non-dimensional time constants,

T 1 = '2 = 3.5. This is the recommended mode of operation. In such a case
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the only required input is the distortion pattern and the compressor reduced
frequency, k.

However, if it is desired to change the non-dimensional time
constant and/or the "order of response" the program is designed to accept these
as input items on Card 1 (Refer to Figure E-l).

2. An arbitrary number of total pressure values are input into the
program in order of increasing circumferential position up to a maximum of 144.
The corresponding circumferential positions, which are arbitrary, are required.
As an option it is possible to use the sine input subroutine to generate single
or multiple harmonic sine waves of a specified amplitude in percent. Three
sample cases are given which demonstrate the use of both types of input.

Multiple cases are run by repeating all cards except the initial
card which gives the number of cases to be run.

3. The number of harmonics used in the Fourier series can be changed
by changing the value of the parameter KN in the main program. KN = 72 is
recommended for complex patterns where five degree resolution is adequate. If,
for example, 2 1/2 degree resolution is required, set KN equal to 144. More
harmonics will increase the accuracy of representing the input wave at the
expense of more computing time; the effect on the calculated loss in stall
margin is usually small.

4. The input data arrangement is illustrated in Figure E-1. The data
on the first card is used to signal the number of cases to be executed during
the run. All control parameters are input for each case. The input data for
the arbitrary distortion profile and the sine wave distortion profile are dif-
ferent; and are illustrated in Figures E-l(b) and E-l(c), respectively. A
detailed description of each input parameter follows. Parameters input in
I format (see Figure E-l) are right adjusted.

JJ - Number of cases to be executed during run, input only once.

NORD - Order of system response.

KREF - Compressor reduced frequency.

T 1 - First time constant; if zero input, T 1 defaults to 3.5.

T
2

- Second time constant; if zero input, T2 defaults to 3.5.

LSPR - Key for long print out; LSPR f 2, long printout
LSPR = 2, short printout

KKKK - Key for sine or arbitrary distortion profile
KKKK = 1, sine input follows
KKKK Z 1, arbitrary input follows

K - Number of data points in arbitrary distortion profile defini-
tion 1 < K < 149.
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FORMAT
PARAMETER

FORMAT
PARAMETER

. AND SO ON THROUGH CASE "JJ".

CASE 2

CASE 1

16
JJ

Figure E-l(a). General Input Data Deck Arrangement.

/ F1O.5 F10.5 F1O.5 F10.5 F10.5 FlO.5 F10.5 FlO.1
T (1) T (2) T (K)

/F1O5 F10.5 F1O.5 F10.5 F10.5 FlO.5 F10.5 i F10.[
PT (1) PT (2) PT(K)

/I6 1
K

BLANK CARD

/ I6 I F10.5

NORD KREF

F10.5 F10.5 I 15 

T2 LSPR

Figure E-l(b). Arbitrary Distortion Profile Input Data Deck Arrangement.

FORMAT
PARAMETER

Figure E-l(c). Sine Wave Distortion Profile Input Data Deck Arrangement.
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PT(I) - Total pressure distortion profile; arbitrary units, either
ratio of local to freestream or avg, or absolute dimensions
(PSIA, PSFA, N/M2, etc.).

T(I) - Circumferential location (degrees) to describe distortion
profile, must be input in ascending order.

MMM - Sine wave input distortion, number of cycles per revolution.

AMPL - Sine wave distortion maximum amplitude.

5. Most of the output data are labeled. The printed data include a
summary of the input data, a short or long output data format, and a printer
plot of the instantaneous and effective pressure ratios.

For the short printout, the output data include:

SYS ORDR - System order, input parameter NORD

KC - Compressor reduced frequency, input parameter KREF

TAU1 - System time constant one, T1

TAU2 - System time constant two, T 2

SINE WAVE INPUT

a. AMPLITUDE - Sine wave distortion profile maximum amplitude,
input parameter AMPL

b. MULTIPLE/REV NO. - Number of sine wave cycles per revolution,
input parameter MMM

or

INPUT PT THETA - list of arbitrary distortion profile total pressure and
angle pairs; these are PT(I) and T(I) input parameters,
from I = 1 to K.

PT AVG - Average total pressure of the input distortion profile.

LOSS IN STALL MARGIN - This is the loss in stall margin.

NORMALIZED LOSS - Loss in stall margin divided by distortion, where
distortion is (PT - PTmin)/PT.

The printer plot is composed of:

1. the input instantaneous total pressure ratios

2. and the effective total pressure ratios versus circumferential loca-
tion, in degrees.
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The long printout also includes

PT/PTAVG - linearly interpolated total pressures divided by the
average; computed from the input profile.

THETA - Circumferential location, radians.

A(I)/AVE - Fourier coefficients, a, for harmonics 1 to 18, divided
by average total pressure.

B(I)/AVE - Fourier coefficients, b, for harmonics 1 to 18,
divided by average total pressure.

C(I)/AVE - Fourier coefficients, c, for harmonics 1 to 18,
divided by average total pressure.

PHI(I) - See Equation (E-3), radians

PHASE ANGLE - Transfer function phase shift for harmonics 1 to 18,
radians

AMPLITUDE RATIO - Transfer function amplitude ratio for harmonics 1 to 18

PT
2
INST - Instantaneous total pressure computed from Fourier fit

THETA - Circumferential angle, radians

THETA - Circumferential angle, degrees

PT2 INST - Instantaneous total pressure ratio computed from Fourier
fit and normalized by average total pressure.

PT2 EFF - The computed effective total pressure ratio, normalized
by the average.

SPR LOSS - The loss in stall pressure ratio.

INPUT RPI/RPO - Defined by Equation (18) in main text.

RP(EFF)/RPO - See Equation (17) and Figure 8, in main text, for
definition.

C. Subroutine Descriptions

1. Subroutine LINR

Subroutine LINR accepts the input total pressure and angle data.
The angles (and corresponding pressures) are input in increasing order and may
be unevenly spaced. The subroutine linearly interpolates the data to generate
total pressures every five degrees (KN = 72).
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2. Subroutine ALF

Subroutine ALF accounts for the dynamics of the rotor stall pro-
cess. The subroutine accepts (1) the number of harmonics to be used, (2) the
order of the response, (3) the compressor reduced frequency, and (4) two time
constants. The output is the phase angle and amplitude for each of the har-
monics.

3. Subroutine Sine

The sine subroutine may be used to generate sinusoidal input data.
When the sine subroutine is used, no pressure or angle data are input. The
subroutine accepts the amplitude, and the number of sine waves per 360 degrees.

4. Subroutine Plot

The PLOT subroutine generates a printer plot of the interpolated
input total pressure ratio, and the calculated effective total pressure ratio.
The plot is suppressed when the output circumferential spacing is other than
five degrees (i.e., KN d 72).

D. Program Limitation

The dimension statements allow for a maximum value of KN = 144 which
corresponds to 36 harmonics, and 144 circumferential spaced total pressures.
The plot limits are fixed; the upper limit is 1.25 and the lower limit is 0.75.
If the order of response is other than two, the two input time constants have
to be equal.
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IV PROGRAM LISTING

A listing of the main program and the four subroutines are given below:
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V. SAMPLE PROBLEM

A. Input Data Description

'T'4~T"7n T".-g? 8 sn 1rr_75;57 U 17.. N'~B'? .17745sT l" t1Zi 40'q-7 Rq0t~ 3tttn4 9, 0 ; 6 '3t45~? 8t

.^ . : 9. 90.- _ 

I ._ _ _ _ _ - _
2 .2 -
Z .1 3,*9 IS5F- -- 10 

123467 2369636 016__ _ -9 CI--T

10 9.3 o.. Zh1- T0.I21 i *n-I.

I Z ] 4 5 h r R
1234567 9012345 6 78O 4-900i--T-F-q- f 567f . lc}. 1?3 4-67Tq012345A7R9? 01234567B90 1 346 7890

B. Output Description

Pages 120 through 125 present the long output for the arbitrary distortion profile
input. A two per revolution sine wave short output is presented on page 126. A
final short output for a complex distortion profile input is presented on page 127.
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SYS ORnR KC TAUl TAU2
2 .10000 3.50000 3.50000 0

LONG/SHORT PRINT OUT

INPUT PT THETA

1.00oo 0n .90000 1.00000 .90000 89.00000 1.00000 90.00000
1.20000 91.00000 1.20000 359.00000

OUTPUT DATA
PT AVG

1.12407 __

PT/PTAVG THETA
..... .88962 0

2_ .80066 ,08727 _-_

-3 .80066 ,17453
4 .80066 .26180
5 *90066 .34907____ _.__
6 .80066 .43633 .. . .....
7 .80066 .S2360 ...- -------------- -
8 .80066 .61087
9 .80066 ,69813

10_ .80066 .78540 ___.__ _.___._ _
11 .80066 .87266____ .
12 .80066 .95993 _____ ___
13 o80066 1,04720 ...
14 .80066 1.13446__ _._ _ _
15 .80066 1,22173
1_ 6 .80066 1,30900 .. ...
17 .80066 1,39626 ....
I q 80066 1,48353__ __
19_ .88962 1,57080 .. . ..

- 20 1-.6755 1,65806 _ _
?1 1.06755 1.74S33

. _22? 1.06755 1.83?60
23 1.06755 1.91986
24 1.06755 2.00713 _.__.___._ _ ___ _

__ 25_ 1.06755 2,09440_ ___ ___ ___
26 T *C675 2.14166
77 1.06755 2.26893 ______

28_ 8 .06755 2.35619 __. _
29 1.06755 2;44346
30 1.0675S5 2.53073
3___1 1.06755 2.61799 .

_ 32 1.06755 2.70526__ _ _
___3_3 1.06755 2.79253_ ........

__34_ 1.06755 2?87979 _..___ _. __ ...
35 1.06755 ?296706
36 1.06755 3,05433
37 1.0675S 3.14159
3R__. 1.06755 3.22886
_39 1.06755 3.31613
40 !1.06755 3140339

.. 41 _ 1.675F 3449066_ _ ___ 
4_ 1.06755 3.57792 __ __ 

43 1.06755 3.66519
44 6 A 7F5S 13.75246
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45 1.06755 3 83972
46 1.06755 3,92699

_47 1.06755 4,Q1426
-48_ .06755 4,10152
49 1.06755 4.18879
50 1.06755 4,27606
51 1.06755 4,36332
52 1.06755-- 4,45059
53 1.06755 4,53786

--54 1.06755 4.62512
.55 .. 1.06755 4 71239
56 e.06755_ 4.79966
57 - 1.06755 4.88692
58 1.06755 4.97419
59 1.06755 5.06145
60 1.06755 5,14872
61 1.06755 5.23599
62 __1.06755 5,32325
63 1.06755 5.41052
64 1.06755 5.49779
65 1.06755 5,58505
66 1.06755 5,67232
67 1.06755 5,75959
68 1.06755 5.84685
69 1.06755 5.93412
70 1.06755 6,02139
71 1.06755 6,10865
72 1.06755 6,19592
73 .88962 6.28319

OUPIEP COEFFICIENTS 
A(T)/AVE R(I)/AVE C(I)/AVE PHI(I)
1 -0.08578 -0.08578 .12131 .78540
2 -0.00000 -0.08495 .08495 .00000
3 .02749 -0,02749 .03888 -0.78540
4 -0.00165 ,00000 .00165 -1.57080
5 -0.01782 -0.01782 .02520 .78540
6 -0.00000 -0.02833 .02833 .00000
7 .01132 -0.01132 .01601 -0.78540
8 -0.00165 ,00000 .00165 -1.57080
9 -0.01028 -0.01028 .01454 .78540

10 -0.00000 -0.01705 .01705 .00000
11 .00694 -0.00694 .00981 -0.78540
12 -0.00165 .00000 .00165 -1.57080
13 -0.00743 -0.00743 .01051 .78540
14 -0.00000 -001232 .01232 .00000
15 .00496 -0.00496 .00701 -0.78540
16 -0.00165 .00000 .00165 -1.57080
17 -0.00600 -0.00600 .00849 .78540
18 -0.00000 -0.00988 .00988 .00000

TAUI TAU2 KC
3.50000 3.50000 .10000

HARMONIC NO PHASE ANGLE AMPLITUDE RATIO
1 1.22145 .67114
2 1.90109 .33784
3 2,25275 .18484
4 2.45554 .11312
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5 2.58499 *07547
_ __ 6 2,67411 ,05365

_ 7 2,73896 ,03998
8 2.78817 ,03090
9 2,8?676 .02458

-- _ 10 2.85780 ,02000 ____
11 2.88330 .01659

____ 12 2.90461 .01397
13 2,92269 .01193
14 2.93821 ,01031
15 2.95169 .00899

6 2.96349
7 2.97392

18 2.9R319

.00791
.00701
.00626

LOSS IN STALL OPESS RATIO
,11709

NOPMALIZFD LnSS
.58737

PT2 INST THETA
1 1.04538

.91047
0

THETA

.08727 s.0o000
.17453 10.OOnOO

.90089 .26180 15.o0000

PT2INST PT? FFF SPP LOSS
0 .92999 1.06483 -0,.06483

80997
.77771
.80145

1.06299 -0 .06299
1,05816 -0.05816
1.05061 -0,05061

.90916 .34907 20.00000 .80881 1.0412R -0.041?R

.89362 .43633 25.00000 ,79498 1.03079 -0.03079

.89282 .52360

.90316 .61087

.89977 .69813

.89977

13 .89282

.78540
.87?66

.04720

30.000000
35. 0000
40.00000
45.00000
50.00000
55.00000

.79427 1.01940 -0.01940
,80347 1,00744 0.007 -
,80045 ,99530 .00470
.79445 ,98315 ,016AR - -

.80045 .97111 ,02R89

.80147 .95939 _04061

.79427 .94809 .05191
14 .8936? 1,13446 65.00000 .79498R 93718 .062R2
_ S .90916 1.22173 70.00000 ,801 .92674 ,073h___
.6 __ ,9089 1j30900 75.00000 ,80145 ,91697 .08303

L___17 _ 7420 1,39626 80.00000 .77771 .90773 .09227 .. _
1, .91047 1.48353

1 .7n00
14589 l.h58;06

.181 25
1.20303

90.00000
95.0o0on

.74533 100.00000
.32?60 105.00000n

1.91986 110.00000
2.00713 115.00000
2.09440 120.00f00

19257 2.18166 125.00000
IR934 2.26893 130,00ml O

.80Q97 .89881

.92999 .89077
1,05499 .8R509
1.09220 .R291 .
1.06329 .8841 ,1
1.05087 .8R734 .
1.07024 .9223 .
1.07631 .89847

.10119

1.491
.709
1599

10777
.101 3

1,06094 .90r575 09425
1.05806 ,91356 08644

* e t. ) 1'b 3IJV*e:JU3V IU 4r IC ·1U .I0.

1.20505 2.44346 140.00000
1.19171 2.53073 145.00000

1.07204 .93002 .06998
1.06017 .93846 .06154

10_9261 6179Q 9 lo nnnnn 1 .naan99 9671 nOA7
_ -- _ _ e In. 1If *L I B rC. *14 7. I u C____ ___

_32 1.20523 2.70526 155.00000 1,07219 ,95475 __.045 _5 __
__ 33 1.2025R ?.79?53 160.00000 1,069R4 ,9626L ,03739

,18966 28?7979 165.00000 1.05R34 .97019 .029R1
35A__119461 2?96706 170.00000 1,06275 ,97732 .0226R _ ___
36 1.21369 3,05433 175.00000 1.07072 .9840R ,01592
37 1.21758 3.14159 19q0.0000 1OR9319 99064 ,00936 _ __ ___

. 20387

.19607
3.22886 135.00000
3.31613 190.00000

1.19943 3.40339 195.00000

1.07099 .99701 .00299
1.06405 1.00299 -0.00299
1.06703 1.0085O -P.00850

1 .19960 3.49066 200.00006

3 _

6
7
8
9

I0

12

_ 26_
27

38
39 1

85,.00n00

-nhlc v ? a -IqI llqnnnnn - n71P noL n7R-t

41 1.06719 1.01360 -0.01360
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42 1.i9556 3.57792 205.00000 1.06359 1.0oi30 -0.01830
43 1.1 9729 3,66519 210.00000 1.06514 1.02259 -0.02259
44 1.20120 3p75246 215.00000 1,06862 1,02653 -0.02653
45 1.19843 3r83972 220.00000 1 03016 -0.03016
46 1.19497 3,92699 225.00000 1.06307 1,03349 -0.03349
47 1.19843 4,01426 230.00000 1006615 1.03650 -0.03650
48 1l20120 4,10152 235.00000 1.06862 1.03925 -0.03925
49 1.19729 4,18879 240.00000 1.06514 1.04179 -0.04179
50 1.19556 4,27606 245.00000 1.06359 1.04409 -0.04409
51 1.19960 4.36332 250.00000 1t06719 1.04616 -0.04616
52 1.19943: 4.45059 255.00000 1.06703 1.04805 -0.04805
53 1.19607 4P53786 260.00000 1.06405 -. 04979 -0.04979
54 1.2Z38.7.'i 4,6251:2'65.00000 1.07099 1.05135 -0.05135
55 1.21758' 4.'71239:-270.00000 1.08319 1.005284 -0.05284
56 1.21369 4.79966 275.00000 1.07972 105441 -0.05441

_ 57 1.19461 4.88692 :280.00000 1,06275 1,05596 -005596
58 1.18966 " 4'97419 2'8500000 1.05834 1.05727 -0.05727
59 1.20258 %:#:6145 290.00000 1.06984 1.0583? -0.05832
60 1.20523 -...- :472 295.00000 1.07219 1.05930 -0.05930
61 1.19263 -5.23599 300.00000 1.06099 1.06021 -0.06021
62 1.19171 5,32325 305.00000 1.06017 1,06095 -0.06095
63 1.20505 5,41052 314.00000 1.07204 1.06153 -0.06153
64 1.20415 5.49779 315.00000 1.07124 1.06212 -0.06212
65 1.18934 5.58505 320.00000 1.05806 1.06268 -0.06268
66 1.19257 5.67232 325.00000 1.06094 1i.6307 -0.06307
67 1.20985 5.75959 330.00000 1.07631 1.06337 -0.06337
68 1.20303 5.84685 335.00000 1.07024 1,06375 -0,06375
69 1.18125 5,93412 340.00000 1.05087 1,06411 -0.0-,6411
70 1.1952? 6.02139 345.00000 1.06329 1T.06426 -0.06426
71 1.22771 6.10865 350.00000 1.09220 1.06438 -0.06438
-7? 1--.18589 6.19592 355.00000 1.05499 1.06479 -0.06479
73 1.04538 6.28319 369.00000 .92999 1.06483 -0.06483

iNPUT QPI/RPO _QP(FFF)/PPO
.93517

1.19934 .93701
1.19934 .94184
i.19934 .94939
1.19934 .95872
1.19934 .96921
1.19934 .98060
1.19934 _ .99256
' 1.19934 1.00470
1.19934 1.01685
1.19934 1.02889
1,19934 1.04061
1.19934 1.05191
1.19934 1.06282
1.19934 1.07326
1.19934 1.0303
1.19934' 1.09227
1.19934 1.10119
1.11038 1.10923
.93245 1.11491
.93245 1.11709
.93245 1.11599
.93245 1.11266
.93245 1.10777
.93245 1.10153
93245 1.09425
.93245 1.08644
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.93245 1.07834

.93245 1.06998

.93245 1.06154

.93245 1.05327

.. _93245
.93245
.93245
.93245
. 93245
.93245
.93245
.93245
.93245

.93245

.93245

.93245

.93245

.93245

.04525

.03739
L02981
.02268
I, 1592
.00936

.99701

.99150

.98640

.98170

.97741

.97347

.93245

.93245

.91245

.93245 _

.93245

.93245

.93245
_ 93245
.93245
.93245
.93245
.93245
.93245
.93245
.93245

_ -.93245
,.93245

.93245

_,93245
.93245

.96651

.96350

.96075

.95821

.95591

.95384

.95195

.95921

.94R65

.94716

.94559

.94414

.94273

.94168

.94070
,93979
.93905
.93R47
.937R8
.93732
.93693
.93663
.93625

_..... 93245 .93574
.93245 .93562
.93245 .93521

___ 1.13R .,93517
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RPI/RPQ =INPUT=I
RP(FFF)/RPO=OUTPUT=E

1.?5 1

1 ITIITTIIIIIII II

!.I EEEEEEEE
1 EE EEE
1EE EEE
1 FE EEE _
1 FF FFFE

i1.O I EF EEEEE
I EE EEEEEEEEEE
lEEF IIIIIIIIIIIII IIIIITIIIIIIIIIIIIIIIFEFFEEEEEEEEEEEEEEEFE
1
1

1

0.75 1

0.0 180. PS

CIRCUMFERENTIAL POSITION · DEGREES
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SYS ORR KC TAll1
2 .000oo 3.500sooo
1 2 .20000

SINE WAVE INPUT
AMPLITUDE MULTITLE/PEV NO.

.20o00 2.00000

TAU2
3.5n000

LONG/SHORT PRINT OUT

OUTPUT DATA
PT AVG 

I .On'00 .. _ __

TAU1 TAU2
3.50..0 3.so00n 

LOSS IN_ STALL ODESS RATIO
.06756

KC
10000

NORMALIZED LOSS
.3377R

RPI/PPO =INPIIT=I
RP(FF) /RPO=OUTC

25 1
1

._-]I TITII
I IT II II

- - I I I 

1_ I II
1 I L _ __ _ II

1
I

IEFFEEEF
!1 -

FE

EFFEFFEEF
EF I I

EEE I
EF

I
I

T

I
I

EE I
EFE I

EF I
EEFEEFEEF

T
. __ 1 I

_II II1
I_ 1 I

_,_ . ._

DUT=F

I I I T I ___

II

I

FEFFEEEEE
EF I EE

FF ... EE_ I
FE T E I

F I FFF

II 1I

I
- - -- - ~ ~ ~ _ _ _ .

= . ___ Q0.0 180. 360.

CT19CJMFEENTIAL POSITION , DEGREES
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SYS ORDR KC TAUI TAU2 LONG/SHORT PRINT OUT
2 .10000 3.50000 3.50000 2

INPUT PT THETA

1.00000 0 .90000 90.00000 1.00000 180.00000 1.05000 265.00000
1.200*0 270.00000 1.05000 ?75.00000

OUTPUT DATA
PT AVG

.9R960

TAU1 TAJU2 KC
3.Sn@Oo 3.50000 .10000

LOSS IN STALL PPESS RATIO NOPMALIZED LOSS
.04166 .46008

RPI/PPO =INPUT=T
RP(FFF)/RPO=OUTPIJT=F

1.25 I

-1 TIITIT
1 IIIII IIIII
1 TIlI EEEEFEEEFEEEEEEEEEEEFE
I III EEEEEEFE IIIIT EEFEEE

1.00 1II FEEFEEE IIIIII FEEEEEE IIIII
1EEEEEEF IIIIIIIII EEEEEEEEEEEEEEEE

11 T-

0.75 1-

.0 180. 360.

CIRCIJMFERENTIAL POSITION * DEGREES
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Preceding page blank
APPENDIX F

Solutions of the Navier Stokes Equations for Vortex Flow

Definition of several vortex flow fields are developed below by solution
of the Navier-Stokes Equations for both a steady and for a time dependent vor-
tex. The choice of a vortex for use in describing turbulent flow will be made
and the boundary conditions leading to this choice discussed.

Navier Stokes Equations of Motion:
ten shown below ¥

Using the cylindrical coordinate sys-

V
1*

CYLINDRICAL COORDINATE SYSTEM

the equations of Motion of an incompressible viscous fluid in two
are:

av, + r ar + vr e r ar + a $ + r ayr + 1 a2'at 3r r a6 r 3r 3 r ar pa

__ aVa VA are 1 ad Va2v 1 a 
2at r ar r ae r Fr P a +j ar r+ rr -r (-ae

Continuity:

ar (rVr) + av_ 0
i-r ae

dimensions

- 2 avQ - Vr)

(F-l)

+ 2 avvr - V)ae ae )

(F-2)

(F-3)

For the vortex model, Fe and Fr are zero and the pressure P and velocities
vr and ve are independent of 8. Further assume that no source or sink occurs
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within the area enclosing the vortex, in which case vr - 0. Equation (F-2)
then reduces to the following:

ave W V 2 F 1 e vI (F-4)
at r + r r r r e

Solution of the Navier Stokes Equations. - There are several solutions of
equation (F-4), each representing a different set of physical boundary condi-
tions. Five of these solutions are discussed.

For a steady flow v is independent of time and equation (F-4) reduces to
the following:

a21 1+ r (F-5)
- -- Ve o

The two solutions are:

(a) For forced vortex (solid body rotation):

v
e
- klr (F-6)

This is shown in Figure F-1.

(b) For a Potential (free) vortex:

ve = k2 /r (F-7)

This is shown in Figure F-2.

A combination of equations F-6 and F-7 has been used to approximate a
viscous flow model. Specifically, the following form results and is shown in
Figure F-3.

ve- l+r (F-8)

This satisfies the Navier-Stokes equations when r<<l or when r>>l; not, however,
at r - 1 (see Figure F-4). Viscous effects cause non-recoverable losses. These
losses dictate the vortex velocity and energy decrease with time. As a conse-
quence a solution containing viscous dissipation must be time dependent and no
steady state solution that fits the boundary conditions imposed by real flows
can be found.

For unsteady flow, three basic solutions have been found. The first is as
follows:

r 2

\ v8 . - e 4vtI (F-9)veI w
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voe r

2

r

Figure F-1. Velocity Ratio of a Steady Forced Vortex

(Solid Body Rotation) --- Equation (F-6).
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V
8
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+1

v
0

-4 -2
I
2

v
8 C

r

-1. L

Figure F-2. Velocity Ratios of a Steady Potential

Vortex --- Equation (F-7).
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vo 2(r/a)

VOmax 1 + (r/a) 2

Figure F-3. Approximation to a Vortex Having a Forced Rotation

Near the Center and a Potential Motion at Large Radii ---

Equation (F-8).

+1

v e

V¥ max
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V*

O max

2

(r/a)

2(r/a )

1 + (r/a)
2

4
r/a

-' - 2(r/a)
v *0 max

Figure F-4. Comparison of the Approximation with the Two Steady Solutions
of the Navier-Stokes Equations.
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This represents a vortex that at zero time has a potential flow field. At
t > 0, viscosity effects begin to cause the vortex to decay as shown in Figure
F-5. The radius, r shown in Figure F-5 is that arbitrary radius having
the velocity, vy, a? time equal to zero. This solution is given, for example,
in Reference 14 page 81.

A second solution exists for a vortex that is started impulsively at time
t - 0, having a strength concentrated within a zero radius (a Delta function).
At time t - 0 the influence of this line vortex spreads. The normalized shape
of this vortex is shown in Figure F-6, and compared with the other vortex flow
fields in Figure F-7. This particular solution is attributed to G. I. Taylor
in Reference (15).

Its equation is given below:

r 2

ve -B I (F-10)

It will be assumed that this model most nearly represents the type of vortices
in turbulent flow where the influence of a formed vortex is at first limited but
increases radially with time. Reasons for this selection are discussed below
in Appendix G.

A set of additional solutions to the Navier-Stokes equations can be found
by the technique of separation of variables. These solutions are as follows:

-A2tv 06- · Z (u) (F-il)

where: Z(u) - Jl(u), J_l(u), YI(u), Hl(u), Hj(u)

Jl(u) - Bessel Function of the first kind of order 1

Jl(u) - Bessel Function of the first kind of order -1

Y1(u) - Bessel Function of the second kind of order 1

Hj(u) - Hankel Function of the first kind of order 1

H1(u)* - Hankel Function of the second kind of order 12
U2 . (X2 r 2 )/v

These solutions however are oscillating with radius and as a result do not
fit the boundary conditions of the problem at hand.
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+2

ve

( vOer

+1

4vt/r
2

O

1 2 3

r/r
0

Figure F-5. Velocity Ratio for a Potential Vortex Allowed to Begin
Viscous Decay at Time Zero. --- Equation (F-9).

136



1 2 3
r/a

V/vOmax - (/a) 

Figure F-6. Velocity Ratio of a Vortex Started Impulsively at Time Zero
--- Equation (F-10).
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+1

vo/Ve max

vA - (r/a)
Vemax

-2

2(r/a)
l+(r/a) 2

-1
(rhro)

Figure F-7. A Comparison of the Vortex Velocity Ratio for Three Flow
Fields Satisfying the Three Different Boundary Conditions.
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APPENDIX G

Boundary Conditions for Vortex Model

For the purposes of developing a fluid dynamic model of turbulent flow
certain boundary conditions must be imposed on the vortex description that meet
the physical conditions associated with the turbulent eddies. These are assumed
to be as below:

(a) ve must be zero at a vortex radius of zero (viscous forces predominate).
(b) ve must be zero at a vortex radius of infinity.
(c) v6 must be continuous between 0 <r <-" and satisfy the equations of

motion.
(d) The zone of influence of an eddy or vortex must be small at first, as

when it first forms, and grow with time; as opposed to an eddy that is
fully established at all radii, then proceeds to decay, i.e. the trans-
fer of momentum is outward with time.

A summary of various vortex flows is given in Table G-1 along with a graphical
representation of the vortex and its respective ability to meet the boundary con-
ditions. The Figure numbers in the Table refer to Appendix F. As shown, only the
vortex formed by the impulsive start meets all the required boundary conditions.
For this reason it was chosen as a typical vortex in turbulent flow and will be
used in further development of the fluid dynamic model of turbulent flow.

A word of caution, however, the vortex proposed assumes a laminar viscos-
ity coefficient. Bear in mind that any given vortex may have smaller eddies
forming in the core which in themselves may produce "turbulent" flow in which
case decay would be governed by an eddy viscosity and occur an order of magni-
tude faster. This turbulence could also cause modification of the velocity
profile. Because of the assumption to use a laminar viscosity coefficient or
specifically a viscosity coefficient independent of both radius and time, and
because of the assumed impulse start of the vortex, the option must remain open
to select other vortex velocity fields subject to experimental verification.
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APPENDIX H

Details of the Selected Vortex Flow Field

A vortex flow field that satisfies the unsteady Navier-Stokes Equations
and the proper boundary conditions was selected as representative of those
eddies typical of inlet turbulent flow. This particular solution was first
given by G. I. Taylor in 1918 and represents a vortex formed instantaneously
in undisturbed flow. The influence of this impulse begins to propagate out-
ward at t = 0 . Table H-1 is presented in summary giving the velocity, angular
momentum, vorticity, circulation, and static pressure distributions of the
vortex along.with the rates of decay of each parameter. Derivation of the
characteristics and graphical representations follow.

Velocity. - The vortex flow field selected for detailed study is defined
below:

r 2

r -4vt (H-l)ve B t- e

Where: v = velocity in angular direction

B = constant

r = radius

t = time

v = kinematic viscosity = //p

The radius, a, at which the velocity is a
the derivatives Ovaq 4r, equal to zero or

r2

vA B 4vt 2Br2 - 4vt
ar P 4'4t3 

Thus:

r 2

2vt

maximum can be determined by setting

=O

1

or

.r~v/ 6Max'
r@V . vYe,1 a - ,2vt (H-2)

Note that a grows at a rate proportional to, t2. Normalizing the vortex radius
by a, Equation H-1 becomes:
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, ,r 9

v - B - e (H-3)

Normalizing v. by the maximum value, the velocity ratio is:

,r (-v -e a (H-4)

This is shown graphically (for a given time) in Figure H-1.

Vortex Angular Momentum. - The equation of moment of momentum (angular
momentum) is as follows:

Mw = (~ x r)dm (H-5)

where the arrow denotes a vector quantity, "X" a cross (vector) product, and
"dm" an elemental mass. In the cylindrical coordinate system

ye

r r r

m - p x Volume

dm - prdedr (unit depth)

·where denotes-the unit vector in the e direction

r denotes the unit vector in the r direction

Therefore:

M -JfvorprdOdr r2

2 2f r e 4vt dr

To integrate let [ - r 2

dE - 2rdr

dr -/

r3 - (r2)3/2 , &3/2
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1.0

r/a

v - r/a le -½[(r/a) -1] IV max I i

Figure H-1. Velocity Ratio of a Vortex Started Impulsively at Time Zero.
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Thus

B fp 4vt dv

Mw - rpB(4v)2 (H-6)

Note: The angular momentum is independent of time and hence is conserved.
Because Mo is conserved it would be a logical term in which to express
the constant "B".

Thus:

B (H-7)

Vorticity.- Vorticity is defined as:

R ' x v-

t" (rve)t

.la Br2 4vt) 

r 2

- e 4vt 2B Br2 i (H-8)

At a given time the maximum vorticity is found by setting the derivative
of vorticity with respect to radius equal to zero. Thus:

.-r2 r2 r2
an 2B 2r - 4t Br 4vt Br3 4vt

ar ' - -iz e -- e + 4-vZt e= 

P- ~ax 2ar@Qn ' qax

rn I |IMax - (H-9)

Substitute this radius in equation (H-8) the maximum vorticity is:

2B
InlMax ' tr (H-10)

The maximum vorticity therefore decays proportional to 1/t2 .

Substituting the radius at which the vorticity is maximum (Equation H-9)
into the expression for vorticity (equation H-8) and using this maximum vorti-
city to normalize equation (H-10), the following becomes the normalized vorticity:
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r.2
,1(2 - r2 -l)e a

)

and is shown plotted in Figure H-2.

(H-1l)

Circulation. - Vorticity is associated with a local elemental area. This
vorticity can be different at each spatial location in the flow field. By multi-
plying each elemental area by its associated vorticity and summing the results
over the total area, the circulation r will result. Thus:

~~r -1_~ 3~ d A - P~ *.~ ds ~(H-12)

ds - rde ;

r = verde = B 2 e

r
r 2 4vt

r - 2wB 7. e

r 2

4vt de

(H-13)

The circulation approaches zero at infinite radius indicating that the
area associated with negative vorticity exactly balances the area weighted
positive vorticity of Figure H-2. The maximum circulation can be found by
setting the first derivative equal to zero.

ar 4wBr

art - constant

r2

4vt Br3
_ Ut e

r 2

4vt

1 r 2

t2 - 4Vt3 0

r - /4vt - / a (H-14

Maximum circulation occurs at a radius Y/ a.

Normalizing the circulation by the maximum value results in the following:

rM r 2 () ()2 l)

?Max a '
(H-15)

This is shown in Figure H-3.
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+1.0

r/a

-1.0 T

Figure H-2. Normalized (Vortex) Vorticity Distribution.

6

I r/a

Figure H-3. Normalized Vortex Circulation.
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Static Pressure. - By the assumptions made in developing the vortex, the
momentum equation in the radial direction reduces to:

v_2
_ 1 3P (H-16)

r p Dr

Integration yields: r2

P0 Pr APJdp XP r dr PPVjre dr

pressure, which occurs at riO, to obtain the following dimensionless equation:

r2

Pr -Pdp -e -ra (H-18)

Pr=O

The normalized static pressure ratio and velocity ratio are shown compared in
Figure H-4.

Time of Origin of Vortices. - The vortex flow field defined herein began
by an impulse function at time t = O. In reality this is only an approximation
to such vortex motion. Assuming the vortex motion (however the details of its
beginning) can be represented by equation (H-2) the virtual origin can be de-
fined at such time as the vortex radius "a" is zero. Thus:

ao2
Conversely, given a vortex of radius ao the time of origin must have been to 2v
seconds earlier.

The times involved with vortices having reasonable sradii, i. e.,
ao is greater than .003 meters, are so great that viscous decay for vortices
formed in the inlet is virtually non-existent. To illustrate, the velocity will
decay to a value 1/2 of a given value by the following:

Vtot , (aL) 3 /2

ve tutl t2

t2 avett 12/ t = (2 ) 2/3t = 1.6t

Covrslgie vre o adu oh im forgn uthaebent"



VORTEX VELOCITY DISTRIBUTION

+1.0

2 4 6
r/a

VORTEX STATIC PRESSURE DISTRIBUTION

-6 -4 -2

PrO-Po

-1.0

2 4 6

r/a

Figure H-4. Vortex Velocity and Static Pressure Distribution.
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1.0

r CIRCULATION a l/(t/to)

0.8 v/ e - VELOCITY a l/(t/to) 3 / 2

W 0.6 a\\ fl - VORTICITY a 1/(t/to) 2

AP - STATIC PRESSURE a 1/(t/to)3
0.4

' 0.2

0
I 2 3 4 5 6

TIME, t/t o

Figure H-5. Rate of Decay for Vortex Flow Properties.
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Assume: al - .3 meters

t= al 2 /2v

t2 = 1.6 tl (from Figure H-5) = 6250 seconds
The residence time of this vortex in a 3 meters long inlet would be -.02 seconds.
For this reason the assumption will be made that the vortex is essentially in-
dependent of time and defined as below:

r- 

where: B" - B' /t3 /2
B' - M2rr / (4p(4v)2 )
a - V7,f
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Preceding page blank-
APPENDIX I

Total Pressure and Flow Angle of a Vortex Superimposed on a Local Flow

As a first step in developing the statistical model of turbulent flow the
flow field of an isolated vortex was defined in the cylindrical coordinate
system in Appendix F. In part A of the following discussion the vortex flow
field will be converted to cartesian coordinates with the origin at the vortex
center. In part B, the vortex is superimposed on axial flow in a channel and
the flow properties of this moving vortex as measured by a probe fixed with the
wall are determined by a transformation of coordinate systems.

A. Single Vortex in Cartesian Coordinate System. - The following is a
description of the vortex flow field velocity components, flow angle, static
pressure variation, and total pressure variation as seen in the cartesian
coordinate system fixed at the vortex center. This coordinate system is
sketched in Figure I-1. The circumferential angle, Q, is measured counter-
clockwise from the positive x-axis. The vortex size, a, is the radius at which
the maximum tangential velocity, vgmax occurs. These and other basic vortex
relations to be used herein come from Appendix H.

Velocity Components -

The circumferential velocity is a function of the radius only and is given
by

v , Br -r /4vt
: t2-e (I-1)

where B is a constant dependent on the vortex strength (circulation)

v is the kinematic viscosity

t is the time of origin, but is to be assumed constant because of the
short period that the vortex is in the field of interest.

The maximum velocity occurs at the radius r = a = 2t

2
a

Ba 2a Ba e- 1 / 2

Vmax ' 2 2 (I-2)t t.

PRECEDING PAGE BLANK NOT FILMED
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y/a

x/a

SYMBOLS:

a Vortex size,. v = vemax at r = a

e Circumferential angle, degrees
x/a Horizontal non-dimensional coordinate
y/a Vertical non-dimensional coordinate

v Vortex tangential velocity
u0 Vortex horizontal velocity component
v Vortex vertical velocity component
a Flow angle
r Radius from vortex center to flow field point

Figure I-1. Single Vortex Model in Cartesian Coordinate System.
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So that in terms of the maximum velocity

v e

Vemax

Br 
2e e a2)

Ba -1/2

t2

(r e1/2 [(r/a) - 1](-)a
(1-3)

From the geometry of Figure I-i, the velocity components in the x and y directions
are

u - -v
6
sin e

86~~~~~~~~~~~~ (I-4)
'v v- cos 8

The relation between the radius and the cartesian coordinates can be expressed as

cos 0 - sin 8 - (-/a)
(r/a) (I-5)

Substituting equations (1-3) & (I-5) into (I-4) and using the relation (r/a)

(x/a) + (y/a) yields

- 1/2 [(x/a)2 + (y/a) 2 - 11
u - evmax (y/a)e

- 1/2 [(x/a)2 + (y/a) 2 -1]
v - Vemax (x/a)e

Flow Angle: The local flow angle is always tangential. This
fact that no radial velocity exists in the proposed vortex model.
as determined from the vertical and horizontal velocity components

is due to the
The flow angle
is:

" Omax ]a n / - arctan_ skin 8a - arctansv/u) - arctan vI sin l
[ emax csin (cos eJ

-a-ctan 1

(I-7)

Static Pressure Variation: The absolute value of static pressure is required
in order to later evaluate the total pressure. From Appendix H, the static pres-
sure is

Pr - Po
B v e - r /2vt

t
(I-8)
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where B, t, v have been defined, see equation (I-1).

p is density
P is the uniform "freestream" static pressure at infinity
PO is the static pressure at radius r from the vortex center

The maximum static pressure depression occurs at r - o, so

(p -P )3(Pr Po)max t

This equation can be written in the form

(P - Po)max (Ba/t2 )2 (1-9)

By rearranging and squaring the expression for the maximum velocity, equation
(I-2) yields

2 2 2
(Ba/t2) - vemax e (1-10)

Substituting equation (I-10) into equation (I-9), together with the fact that

2
vt - a /2, yields

(Pr Po)max - 2 (-max

The ratio of static pressure at any radius to the maximum static pressure
depression is

2 -r /2vt
pB2v e r2/2t

-r P P- t
3

- e-(r/a)2 (I-12)r ° ' Z

(Pr Po)max 3
t

as given in Appendix H. Therefore, the absolute pressure at any radius is

P ) -(r/a) 2 [- (r/a)2

Pr Po (Pr Po)maxe ema (-13)

Which, in terms of the cartesian coordinate system becomes
P 2 [1- (/a) - (y/a)2]

= - - max e (I-14)r o 2 emax
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Vortex Total Pressure: The total pressure in the vortex flow field, as seen
in the vortex coordinate system, is equal to he sum of the static pressure and the
dynamic pressure. The total pressure is

P P I- v
PT Pr 2 ev

where
P is defined by equation (I-14) and
ve is defined by equation (I-3)

So that the total pressure becomes

(1-15)

P P _ p v2T 0 2 Omax

[l-(r/a)2]
e + v2 (r/a)2

2 rmax
r _ 

PT W P + 2 [(x/a)2 + (y/a) 2 -1] eo 2 Omax

[1-(r/a)2]

e

(x/a) - (y/a), (I-16)

Velocity and pressure variations are shown in Figures I-2 and 1-3. The results
are plotted versus the dimensionless coordinate, X/a, for y/a = O. The velocity
distribution is maximum at x = a, is zero at x = 0, and diminishes to zero at large
radii. The pressure distributions, both static and total, are shown as the ratio
to the static pressure at infinity. The maximum static pressure depression occurs
at r = O. The total pressure reaches its maximum value at x/a _ 1.4, approaches the
local static pressure at r = 0 (V = 0), and approaches the static pressure at
infinity at large radii (V = 0).

B. Single Vortex in a "Fixed" Coordinate System. - The vortex flow field
will now be defined in terms of a "fixed" coordinate system. The vortex model
(and its coordinate system) are assumed to move at a constant axial velocity
relative to a fixed channel as sketched below:

I I/,, If/ /, Z ,,,,, If,,, * , e ,, , , ,, , . , , , I ...

I

TOTAL PR-BSSU3ZI P

is

Fmna COORDINATE SYSTI
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1.01

v6

vOmax

Figure I-2.

x/a

Single Vortex Velocity Distribution

1.21

P/Po T/Po

Pr/Por o

-4 -2 0 2

x/a

Figure I-3. Vortex Pressure Distributions.
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In the vortex model coordinate system, the flow properties are the same as
previously defined. In the "fixed" system, however, the uniform constant velo-
city must be added to the vortex velocity components. This yields different
resultant velocity vectors and total pressures. In both cases, the static
pressure at a point must be identical. (Properties of a flow field are indepen-
dent of the coordinate system).

The fixed coordinate system is sketched in Figure I-4. The vortex and
its coordinate system are assumed to move at constant velocity, Uo, which is
defined as being parallel to the X-axis. The vortex system axes can be set
parallel to the "fixed" system axes because the vortex flow field is dependent
on radius only. The vortex flow field point of interest is the point which
coincides with the "fixed" system origin. Therefore, the flow properties at
the origin of the fixed coordinate system due to a vortex located at X, Y, can
be obtained by applying the following transformation to the equations in the
moving coordinate system.

X =-x and Y I -y (I-17)

The vertical coordinate remains constant, but the horizontal coordinate is a
direct function of time

AX - UoAt (I-18)

Velocity Components. - The vortex flow field velocity components are deter-
mined by substituting (I-17)into (I-6), so that

u ema (Y) e - [(X/a)2+(y/a)2-1] (I-19(a))

v -vma (X/a) e½ [(X/a) 2+(Y/a)2-l (I-19(b))

And then adding the constant flow velocity, UO

U - UO + u

V v

U UO +U v x (Y/a) 'e -½[(X/a)2 +(/a)2-l] (I-20(a))
U - U0 + Vemax (Yfa) )

V --. Vre, (X/a) ½ f(X/a) e [(X/a)2+(Y/a) 21] (I-20(b))

Flow Angle. - The flow angle at the "fixed" system origin is defined as the
arc tangent of the ratio of vertical to horizontal velocity. It is measured
counterclockwise from the positive X - axis. The expression is
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Y/a
0

U

-V \ X/a

SYM4BOLS:

U Flow field constant velocity

a Vortex size, v8 = emx at r = a

o Circumferential angle in vortex system
x/a Horizontal coordinate in vortex system
y/a Vertical coordinate in vortex system
v Tangential velocity
u Vortex horizontal velocity component
v Vortex vertical velocity component

La Flow angle
r Radius from vortex center to fixed system center
X/a Fixed system horizontal coordinate
Y/a Fixed system vertical coordinate

Figure I-4. Vortex Model in Fixed Coordinate System.
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t= arctan (V/U)

= arctan [-V a (X/a) e . - ½[(X/a)2 +(y/a) 2 -1]

UO + VOmax (Y/a) e -½ [(X/a) +(/a) -1]

which after some rearranging

a arctan - (X/a)

(Y¥/a)l+U e -½ [(x/a)Z+(Y/a)2-l]
ve
max

Static Pressure. - The static pressure in the "fixed" system is identical
to the static pressure in the vortex system at a given point. Therefore, in
the "fixed" system, the static pressure is

= 2 e[1 - (X/a)2-(y/a)2] (1-22)Pr 
=

Po - 2 V8max

Total Pressure in Fixed System. - The measured total pressure in the "fixed"
system is the sum of the local static pressure and a corrected dynamic pressure.
The correction is due to the fact that the local (at the origin) flow angle is
not aligned to the "fixed" total pressure probe. The resulting relation is

PT = Pr + nR(a)(p/2)W2 (I-23)

where Pr is static pressure, equation 1-22,

W is the resultant velocity vector,

and nR(ca)is a recovery factor which is a function of the local flow angle

The resultant velocity vector is

W2 = U2 + V2

W2 2[(X/a)2+(Y/a)2ve2 e -[(X/a) 2 +(Y/a) 2 -1]

+ UI Uo+2vemax (Y/a) e -½ [(X/a)2 +(y/a)2-] (1-24)

Substituting (1-22) and (1-24) in (I-23) and simplifying yields

PT 
=

Po + p/2 v2 e [l-(X/a)
2

-(Y/a)2 1 nR(a)[(X/a)2+(y/a)2]-l)

+ nR(a) p/ 2 Uo U0 +2emax (Y/a) e
-

[(Y/a)
2
+(X/a)

2

l] (1-25)
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Velocity components, flow angle, and pressure distributions are presented
in Figures I-5 through I-9. For this single vortex in a uniform constant
velocity flow, the dynamic pressure recovery factor, 77R(a ), is assumed to vary
as the cosine squared function. The dynamic pressure recovery factor 1'R( )
corrects for the probe characteristics which at angle of attack yield total
pressure lower than the actual. This variation with angle of attack is illus-
trated in Figure I-10. For this example, the vortex is assumed to rotate
counterclockwise. The ratio of constant velocity, UO, to the maximum vortex
tangential velocity, Venax, is 1.2. The horizontal and vertical velocity
components of the resultant velocity vector (vortex flow field superimposed on
the constant flow velocity) are given in Figures I-5 and I-6. The coordinates
(both X/a and Y/a) represent the distance from the "fixed" coordinate system
origin, the sensing total pressure probe location to the center of the vortex
flow field. The angle between the positive X-axis and the resultant velocity
vector is given in Figure I-7. These flow angles follow directly from the
velocity components and determine the dynamic pressure recovery factor, The
static pressure distributions is presented as Figure I-8. It is basically
dependent only on the distance from the vortex center. The total pressure
distributions is presented in Figure I-9. Note that whereas the velocity com-
ponent distribution are symmetric for negative and positive Y/a, the total
pressure distribution is displaced downward. This is due to the static pressure
distribution and to the angle of attack recovery factor being less than unity.
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2.0

U
U
o

V max .833
o

Counterclockwise
Rotation

-1

2

X/a = Uot/a

Vortex Horizontal

1.0

V
U

o

-4 -2

-. 5

-1.0

Velocity Component in Fixed System.

y/a = 0

- 1, -1

- 2, -2

Uot=X/a

Figure I-6. Vortex Vertical Velocity Component in Fixed System.
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y/a = 1

-2

Figure I-5.



/a= -1.0

0

2.0

2.0

X/a = UOt/a

Counterclockwise

Rotation

v mx/U
o
= .8333

Figure 1-7. Flow System Origin

Y/a = -2, +2.0

X/a = Uot/a

-1.0, +1.0

0

Figure I-8. Vortex Static Pressure Distribution in Fixed System.
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Y/a = 1.0

2.0
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'- 
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Figure I-9. Vortex Total Pressure Distribution in

Fixed System.
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0o

cos 2( )

(Assumed for the
Flow Model.)

-60 -40 -20 0 20 4o
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Figure I-10. Tvpical Dynamic Pressure Recovery Factor,
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APPENDIX J I

The Autocorrelation Function of a Random Signal ,
Composed of Several Independent Random Variables

The autocorrelation function resulting from a stochastic process is
found in functional form by statistical methods below. 'These developments
are then applied to the vortex flow field and the autocorrelation function
of the turbulence established.

Autocorrelation Function of a Stochastic Process. - The objective of
the following treatise is to establish the autocorrelation function of a
resultant signal, f(t), composed of wave forms g(t) that occur randomly with
time at an average rate of N per unit time (Poisson waves). Each waveform
is specified by several variables that are random. Schematically;

v" ' time

where g(t) may be structured as below:

time

(J-j)g(t) = f(a, v, y, n,t)

167

g (t)---

\' / ,0c



The waves f(a, v, y, n) are identical for identical values of a, v, y and n.

The resultant signal, assuming the variables occur randomly, will be:

A 7/time

As a first step toward the development, assume the wave occurs randomly
with time at a mean rate of n/second and has the waveform specified by only
a single random variable, "a".

Where ai is governed by its probability density function P(a). This wave can
also be considered as composed of various sets of identical waves, such as

Set 1

Set 2

where the number of pulses nl of size a and n2 of size a, etc. is established
by the probability density function P ( p ((a).
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The autocorrelation function of pulses of size a,, governed by a Poisson
distribution having nl pulses per unit time is (see p 336-7 of Reference (16))

R (T) n
1
R a (T) + (t) )

a
1 ,. - , .. .'.

where Ral(T) is the autocorrelation function of a single wave.

Similarly, the autocorrelation function of pulses of size a
2
will be:

-- a ( T ) n2 R2 2
R (T) = n

2
R ()fa (+t)

a2 2 2

;(J-3)

:- Continuing
by summing

R a

the process,-the overall autocorrelation function can be obtained
the above autocorrelations.

2
(T) = Ena Ra. (T) + [ia (t)]

.. . 16 a 

P(a) Ra (T) da + (J-4)

Subtracting the D.C. component (which is independent of (r)) from the
autocorrelation function the following results.

R a (T) = N L.
J L.L.

P (a) R (T) da
a

(J-5)

Extension to multi-variant signals

The typical wave is represented by the following general function
f(a, v, y, n) where a, v, y and n are independent random variables governed
by their respective probability density functions:

P(a)
p(v) 

(y)
P'(n)
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Assume first v, y, and n are constant and only "a" varies. The resultant
autocorrelation will be the same as given by Equation J-5.

Ra (T) = {ni Ra (T) + constant}
i

V

y
n

(J-6)
constant

or schematically

v
y constant
n

Now, for a given al, v will take on
below:

a random value illustrated schematically

constant

By Equation J-4 the autocorrelation of this signal of width a
1
and

having random widths v. as governed by a probability density will e:
1

Ivi

a=a 1

(T) Env
i Rvi

(T) I

a=a1
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There are nvi number of occurrences of this signal. Similarly for a = a2:

R v (T) = a n
a=a

2

R (T)
i + constant

a=a2

n, occurrences of this signal. Continuing for a = a
3
,

.2 an the resultant autocorrelation function will be:

(T)

I + na2 nVi
a=a

1

n i

R

(T)

Vi (T) a
a=a2

+ constant

a.ai

= na i nvi R vi (T ) laai + constant (J-9)En En .Rv (T) Ia=ai
Continuing this same process allowing y and n to take on random values, the
autocorrelation of the resultant signal will be:

Rvay. (T)

= E n nyiE nE n v i Vi
(T) + constant

For a continuous range of variables this will result in an integral form:

R vayn (T) N R(T) P ?(a) P(v) P(y) P(n) dadvdydn (J-ll)

+ constant 

The constant is simply the mean of the resultant signal squared. Thus

constant = [rTETJ
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a4

R av ()aM = an l nv R v
Vi

+ . . ..

R vayn (J-10)



If these positive pulses are added to a wave train of similar but nega-
tive pulses occurring at the same rate

.avyn (T) = 2Nffff R (T) P(a) p (v) p (y) p(n) dadvdydn

+ f(t) (J-12)

But since these negative pulses are equal in number and shape to the
positive pulses and differ only in sign, f(t) = O. Then the following auto-
correlation results for equally likely positive and negative pulses of total
rate N

Ravyn () = N/ JR (Tr) p(a) p(v) p(y) p(n) dadvdydn (J-13)

Autocorrelation Function of the Total Pressures. - The model of turbulent
inlet flow is hypothesized as being composed of a random distribution of
vortices each having a specific size, strength, direction of rotation, and
location. The total pressure fluctuation created by each vortex is given by
Equation 39 of main text.

APT v -v[(Uot/a)2+(Y/a)2-11
2n(--) (Y/a) e

2 v 2 1 ] -[(Uot/a)2+(Y/a)2-1]

For a specific vortex having a given set of properties (size, a; strength,
Vgmax; spin direction, n; and location, Y), Equation J-14 signifies a single
time function. However, each vortex has a different set of properties. There-
fore, the flow field is composed of a family of time functions. The auto-
correlation function of the total pressure fluctuation composed of the random
vortices flowing downstream with the flux of N per second is given by Equation
J-13 with P(a), p(v), P(y), and P(n) being the probability density functions
of the respective independent random variables, the autocorrelation function
of the general wave R( ) is found by means of the definition of autocorrelation
function for discrete waves.

In Equation J-13, P(a), p(v), P(y) and p(n) are the probability density
functions of the respective random variables aS given by Equations J-14 through
J-17. These density functions are in general described by a Beta probability
density function.
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0

This density function and its transformation are flexible and can be made to
fit the boundary conditions of the respective random variables. See Appendix
K for a detailed discussion of probability density functions. The respective
vortex probability density functions are as follows:

a. Vortex Core size, a

P(a)

mk a
a a

I - (-)

n
a

(
1 a)

H for O < a < H (J-14)

b. Vortex Strength (Maximum tangential velocity),

k v8 ma
P(v = v ( max a

P max (vo o

V8 nv

(1-U )
o

for 0 < ve
max

c. Vortex Lateral Location, Y

P (Y) = 1H for -h < Y < H - h (J-16)

d. Vortex Spin Direction, n

p(n) = +1, -1 (J-17)

The autocorrelation function of the vortex flow field as measured at the
total pressure probe is found by incorporating the total pressure wave
(Equation 39 ), the definition of the autocorrelation for a descrete wave
(Equation 41), and the density functions into Equation J-13. This is given
by Equation J-18.

173

< U (J-15)



a 4Ne +fn2

Vm.
(1 -

0

V

k m n
a () a (1- a)aH 'H' (1 H

vvo

4Ne+3/2 n3 H
£3/~·'6"

(t + (t
e-£(a- (t 2 + (t

e

k m n
a a a , a)a
H H H

1 Y2
Ha

v m +2
(m v

U
o

+ T)
2

]

dtdv dYdadnOm

H-h 1 Y 3

£ j[ a) -

e Y 2 o

(t) Ie 2 , 43(Y)]e-~,aj ./

V(1 m nv

(1- U )
U0 r

U 2

a
e

(t2 + (t + T)

dtdv dYdadn
em

Ne+2 /n 4

-0f
e

k m nj.a ka a ma na 
H-H (1. -~.

U 2 2
_[(aE) (t + (t + T) I2

H-h
1[ -1 y2'

dtdv dYdadn
Gm

2 -2(--)a 
iJ e

Uo k v m +4
v (- vU U
o o

(J-18)

This can be reduced as far as Equation J-19 in closed form. Integration
with respect to the random variablesa must be done by numerical techniques.
A computer program was written to evaluate this integral.

y2
-(-a) U kv

e / UO

k v m

U U
o o

Vmnv(1- _m v

v

,I - I
, 
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8kk ()v aU

n (m + 2)1 n !

(m + n + 3)!
V v

+1 1,
e(-~-) fl

0

U T

[ERFC (a-)]

U 2
T2 (o
4 a4e

-h2-h)
a H-h) e
e ~aa

2
.H-h
a + H-h (H)+ ERF(h/a) + ERF (-)I [

a H

m n
a

(1 - -) da) IH H

2 3/2

18 / 3

U
[ERFC (TO

2 +2
+n e

4 f /2

(mv + 3)! nv!

(m
v
+n +4)!

V V

T) + ERFC

(m + 4)1 n!v

(m
v
+ nv + 5)1

-h) + 5 (:I))

U
(a

f1

/1
3 H-h 2
*j(--' ) 1

2 U 2

3 a
T) IF -

e (a)
H

U
ERFC ( T °- ) e

a

2 
-h 2 '3a i.1H-h-2 (a-) /__(H_h) 3

e
5 H-h)
16 -" 

-3 H h))_

m.

2 -
(1 - 3 (-) ) e

n
1- a a
(1 _-) d(-)]

H H

2U 2
T 0O
T-(T->

H-h 2

e
11

+ (ERF
16 t-

+ ERF H-h /-2))]

m n
a ) d H a I (J-19)

where

ERF(z) = 0V e0 do

Numerical evaluation of this integral yields the normalized auto-
correlation function as shown in Figure 27 of the main text.
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APPENDIX K

Probability Density Functions

A physical interpretation and definition of the probability density function
"f(x)" will be given below using the common Gaussian density function as an
example. A summary of the more common density functions and their characteris-
tics will then be given.

Transformation of the Beta distribution demonstrating the added flexibility
that can be obtained by use of this technique will follow. Such flexibility
is required to meet the wide range of density functions needed to fit the
physical turbulence characteristics.

Probability Density Function.- The probability density function "f(x)" for
random data describes the probability that the data will assume a value within
some defined range for a single event or, as below, at any instant of time.
Consider the following time history of the signal x(t) below:

x( t)
b

n T
T

x
= At i Prob [x <x(t) x + Ax] li (-1)

T--oo

The probability that x(t) assumes a value within the range between x and
(x + Ax) may be obtained by taking the ratio of Tx/T when Tx is the total
amount of time that x(t) falls inside the range (x, x + Ax) during an observation
time T. This ratio will approach an exact probability description as T approach-
es infinity. Often random data of this nature assumes a probability density

approaching the bell shaped or Gaussian form as shown to the right of the above
sketch. The mean value, p of random data will be the average over the entire

range. Thus:

u.l.

p fi x f(x) dx (K-2)

1.1.
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The mean square value, a , is the squared value of x over the entire range.
Thus:

u.l.

2 =X x2f(x) dx (K-3)
1.1.

The mean and mean square values are called the first and second moments
respectively. In general the mth order moment is as follows:

u.l.

=m xmf(x) dx (K-4)
1.1.

A random variable is completely specified by definition of all its moments.

Examples of Probability Density Functions.- A summary of density functions
is given in Table I along with a graphical representation. A typical source for
these density functions is Reference 16. The characteristics of the functions
are also given in the Table and will be significant when subsequently fitting the
density function to the properties of the random vortex model.

It should be noted that all of these density functions are greatly limited
in flexibility. Specifically the moments, and hence the shape of the respective
density curves, are fixed (with the exception of the Beta Density).

As an example of experimental data consider the probability density func-
tLion of the total pressure fluctuations measured in an inlet of Reference 12 and
as shown in Figure K-l(a). The data obtained from test agrees closely with the
7aussian Density. However, at other conditions and measurement locations a
skewed density has been measured in the same test. This is shown in Figure
K-l(b). As evident, the Gaussian Density is not representative of this data.

The moments of the Beta Density can be changed by choice of the constants
b and c (see Table K-l). The limit values of this function remain, however, at
zero and unity. The flexibility of this density can be greatly increased by
transformation as developed in the following section.

Transformation of the Beta Density Function.- The Beta Density Function is
defined as:

f(x) = Axb(1-x)
c

for o - x 1 (K-5)

where A = F(b+c+2)

r(b+l) r(c+l)

and r= Gamma Function
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0.

0.(d
(a)

0.5

0.0

(b)

Figure K-1.

Probe Location Near Midstream (2250 Rake)

Probe Location Near Midstream (3150 Rake)

Comparison of Probability Density Functions Obtained
from Inlet Turbulence Measurements with the Gaussian
Density Function. (Test Data from Reference 12,
page 321 and 326 respectively)
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TABLE K-I

SUTM2'ARY OF CO:.0ON P'iZO7llILITF D-:1SMi' ruT.CTIO;:S
NUACE

Gaussian Jf(xZ) = --- :
., V~; -a . 4 CO0

J (z) -= 1'AIt

(=) = a, + ,/Axr) - I' + z 

0 ?"-¢ 17 V '

to

.i I ,
77)

0 Y.X, XA

t1(,,}

0 1/a '

Jt ' I, CDchy

Rayleigh

f(z) = a '""U(z)

Maxmell

j(z)

if() Beto

1 c(z) = 1 1.875 $ I ·

0 0.1 I 1

0 tco

0

CAPABILITY

Uniform

LaPlace

Cauchy

tco

o00

Roki , h.Raleg

No-e

0

0 a .' r

+ co Norse

Beta
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The Gamma function for integers is defined as

r(n) - (n-i)'

Therefore for integer values of b and c the mean

b+l
f(x) b+c+2

For b = c = 2 the density function is as below:

f(x) t

value of f(x) is

X

This can be skewed by choosing b f c and for example with b = 2 and c = 3 the
following density function results:

f(x) 

.5 1.0
x

To increase the flexibility of this density function it will be
two steps. First f(x) will be transformed linearly by y = dx.
following transformation (see for example Reference 16, P ):

f(y) = f(x)
dx

d
The density function of y now becomes:

transformed in
By use of the

(K-6)

( )b (1 - d )f(Y) = A
d

(K-7)



This function is shown below:

df(y)

0 .5 1.0

d

Secondly, transform by translating this distribution by its mean value y, where:
ad

y =fy f(y) dy
0

The required translation is:

Z=y -y

This results in the following density:

-b -c
f(z) = (Z + ) ( - (K-8)

d d d (K-8)

where: A = r(b+c+2)r(b+l) r(c+l)

and = _ A r(b+2) r (c+l)
andd r b+c+3

f(z) is sketched below:

f(q)

_ */X\~~~. -~q
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The first moment (mean) of this distribution is by reason of the translation,
z = y - y, equal to zero. The second moment, which is the mean square value is
found by integration to be:

2 .2 = (b+2) (bc+ 1b+l) 21a2 *1b(-cb+-3) (b~rb+'2- |I (K-9)

Normalizing the transformed density function by the root of the mean square
value, a, results in equation (K-10)

of(z) = at (z+ ) ((1 ( z + (K-10)

To illustrate the flexibility of the transfermed Beta Density, equation (K-10)
is shown graphically in Figure K-2 for various values of b and c, where b Z c.
Note the varying amounts of "skewness" that can be obtained. In Figure K-3, b
is assumed equal to c which is equal to "n". Thus

b=c=n

This gives a symmetrical Density Function. For n = o, the uniform density is
obtained; for n = the Gaussian Density results, demonstrating the wide
range of density functions that can be formed from this transformed Beta Density
Function.

The transformed Beta density still has only the two constants b and c as
variable to change the general shape of the density. As a result this density
still falls short of fitting the data of Figure K-l(b). In an attempt to fit
these data the following Hyper-Beta Density Function was developed.

Hyper-Beta Density Function. - Define a density function, similar to the
Beta density as follows:

P(x) D x b (1 - xn) c for O X < l (K-ll)

To establish D, it is known that the probability of a single event occurring
somewhere in the region of interest is unity. Thus:

I P(x) dx E 1

The constant D is found to be,
1nr (b+c+l-

D =
r (b,) r (:c+l)

This density, which has lower and upper limits of zero and one respectively can
be transformed as the Beta Density was transformed.
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Such transformation leads to the following density:

aP(z) Dal-nb{(Z + p)nb (1 -a
n (Z +)n)

a=a a a
nr(b+c+l.-)

where: D nb+c+l

r(b+-l) r(c+l)n

r(b+c+l+) r(b+.l)
02 n n _ p2

r(b+c+l+-) r(b+-)
n n

D r(b 2) r(c+l)

n r(b+c+l+2)
n

Comparison of this density for a set of constants b, c and n is shown in Figure
K-4, again compared with the test data. Much better agreement is obtained
because of the increased flexibility resulting from the- additional constant, n,
in the definition of the density function.
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Comparison of this density for a set of constants b, c and n is shown in Figure
K-4, again compared with the test data. Much better agreement is obtained because
of the increased flexibility resulting from the additional constant, n, in the
definition of the density function.

0.5

of x)

0.0

Standard Deviation, a

Figure t-4. Comparison of the Gaussian, Beta and Hyper-Beta
Density Functions with Test Data of Reference 12.
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APPENDIX L

Velocity Correlations

The auto and cross-correlation functions of the velocity terms can also
be computed by use of the statistical flow model. These correlations are
commonly called the Reynold's stresses, u--2, v2 and uv. Such "stresses"
produce a static pressure gradient which can also be obtained from the model..
These correlations are developed below by application of the statistical
techniques developed in Appendix J to the flow model..

Axial Velocity Correlation. - The mean square axial
can be obtained from the vortex flow field model and the
turbulence by the method defined by Equation L-1.

velocity correlation
statistical model of

2: %/nfyfvfj u(t)u(t) P (a) P (v6m) P(Y) p (n) dtdadv dYdn

,(L-1)

Wheree the axial component of fluctuating velocity, u(t), is Equation L-2:

Ut 2 2
Z (a) + (-) -1]

u(t) = nv Y 2 a a (L-
a= a

-2)

The respective vortex probability' density functions are defined by Equations
J-14, J-15, J-16, and J-17. Substitution of the probability density func-
tions and the expression for u't) into Equation L-1 and division by U2 yields
the following integral:

Ne+lfn2
o0

mk a

a(a). (1H H

n-a ) H-h

- a)H -

1 Y 2 -(-Y

Ha

U
o k ve m +2

v ( Om) vU U
0 0 0

v n
(1- Em) v

U JX
Ut 2

-( 0 )
a

e dtdv dYdadn
em

Integration of this expression produces the desired mean square value of axial
velocity fluctuation. ~~~~~~( v

+1( v
+2)

2 NH .
n (-) e

o n

H-h
a

(H-h 
z

a )

(mv + l)(mv + 2)

(m na + 2)(m + n + 3)

-(h/a) 2
-h
[a

m +2

)a+ ERF 
a a all

(L-4)

n
a

(1 -) ] d)189
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The last integral must be solved by numerical integration techniques.
vertical velocity correlation can be solved in a similar manner.

The

Vertical Velocity Correlation. - The vertical component of fluctuating
velocity, v(t), is given by Equation L-1 and with the substitution X= Uot
becomes:

v(t)
Ut

= -nVm (a )

U t 2

* - [( - )
e

2
+ Ya

-1]
(L-5)

The mean square velocity will thus be:

k
a
H

Ne+l fn 2

m
,a) a
H

n
(1 - a) a

H

[H-h

fff - (-)
He

k v" m +2

U (U--
o o

v n

(1 - U )
o JO

Ut 2

(- ) ea

Ut 2

- ( -)a dtdv dadYdnem

Integration of this expression as far as possible in
following equation:

2 NH
U

n e (mv +1) (mv +2)
2 e (m +n +2)(m + n + 3)

v V V

n

(1 -a) a] d (a)H 14

m +2
ERF (-)] [k (-)

a a H

(L-6)

closed form yields the

[ERF H-h
[ERF (H) +

a

(L-7)

Velocity Cross-correlation. - Combining the horizontal and vertical
components yields: U 2 9 2

2 2 Y
uv = -n Vm (-) ( ) eOm a a

u . L

a + (Y) - 1]a

2

U 2

0o

U

O

2
v

U
o
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The cross correlation is computed from the following integral equation:

2 -
k m n H-h

uV = N+1 n2 H akaa a a 1 Y a

Uo2

U/o 

H 'H'

kv ve6 m +2
- -) v
U U

o o

- HJ

(1 .em)
U

o

-h

-f
Ut

( 0 )

Hat e

U t 2-
ae dtdv mdYdadn

Gm

(L-9)

Integrating this expression as far as possible in
L-10.

2 +1
-n e

2
(NH

0

(m
v
+ 1) (mv + 2) 

(m + n + 2)(mV + n + 3)V VV V V

closed form yields Equation

-(h/a)2

[e - e

H-h) 2- C-)
]

m +2
[ka (a) a

a H)

n
(1 - a a]I (a

Mean Velocity. - The mean
found by use of Equation L-ll.

(L-10)

value of the perturbation in axial velocity is

u = NnfYvfaf u(t) P(a) P(v m) P(Y) P(n) dtdv dadYdn
em

uv

U
0

(L-li)
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Substitution of the axial velocity perturbation and density functions into
Equation L-ll yields the time averaged or mean velocity:

= Ne+/2n r
U0 0o

k maa a
HH

n H-h
(1 - A) -a

H -h

v ( Om) V
O QO o

vOm nV
(1 _ m)v

c? 0

This can be simplified to Equation L-13.

NH
= n(U-)

o

(m
v
+ 1) 1

e (m + n + 2) '
lV V

[e

U t 2
1 o
2 a

e dtdvm dYdadnem

1h 2

2a -
- e

1 H-h 2

-]" "

m +2
[ka () a

n
(1 ) a ()

The mean vertical velocity is found by similar methods.

V = Nnf fvmfatv(t)

n y avmat

P(a) P(vem) P(Y) P(n) dtdv dadYdn

After introducting the expression for the vertical velocity, this becomes:

- Nel/2 fn
JH

k m
a a a

H 'H'

n
(1 - a) a

H-h 1 -

-W e

-1 

k v m +1
v Om v

UU 
o o

Vm n
(1 - V )

U
0 41r

U t
( 0 )
a

U t 2

- -a
e dtdv dYdadn

em

(L-14)
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And simplifies to:

(L-15)
= 0

Static Pressure. - A static pressure gradient can be supported by the
Reynolds shear stresses. This can also be obtained by use of the turbulent
flow model.

faft
U t 2

n 2 - [( )
2 'Vm e a

+ (Y)
a - 1]

p(Y) P(n) dtdvemda4Ydh (L-16)

Substitution of the density functions and integration yields:

2 NH
= n (-)

o

1f
e

2 Vem

0

m +2

\m +n + 3)
v v

[ (F a)H-h h (a[ m +2
[ERF (H_-)+ ERF ()] [k (a) 

n
(1 - a) ] d (a)

The preceding velocity correlations and static pressure were evaluated
by a numerical integration procedure for the probe location variation from
h=o to h=H/2. The data are presented in Figure L-l, normalized by ?u2.
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3.0

2.5 AP
1 -2

2.0

1.5

v 

1.o

0.5 U V

0
0 0.1 0.2 0.3 0.4 0.5

PROBE LOCATION - h/H

Figure L-1. Velocity Correlations (Reynolds Stresses) and Static Pressure
Difference as Computed from the Turbulent Flow Model.
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Evaluations. - With the assumption of the vortex rotational direction
being equally probable plus or minus, and for the sensing probe in the center
'of the channel (h = H/2). The mean velocities and correlations can be found
in closed form. These are:

u = 0

v = 0

r re NH 

0

Vem

U
o

(m + 2)

(m + nv + 3)~v V

(m
a

+ 2)

(m + n + 3)

At h = 0 (at one wall) the static pressure simplifies to:

AP = E- N)

1/2 pU o
*0

VO (m+ + 2)
(f ) ( (m + l + 3)

(ma + 2)

(ma + na + 3)

A relationship between the velocity correlations (or Reynolds stresses
as they are commonly called) and measurements taken by high response total
pressure instrumentation can now be established by application of the turbu-
lent flow model. An example is given in the next section.
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Unsteady Total Pressure and Velocity Correlation. - The relationship
between the turbulent fluctuation in total pressure can now be related to the
fluctuations in velocity by use of the vortex flow model. This will link
total pressure and hot wire anermometer measurements. The mean square velocity
fluctuation was computed at the center of the duct in the preceding section.
This is:

rTe NH
2 U

0

- v

(a) (em)

0

(m + 2)
v

(m + n + 3)
v V

(m + 2)
a

(m
a

n + 3)
aa

The mean square level of the total pressure fluctuations is given for
the center of the duct by Equation L-19.

= e (U )
0

a
(H) (et- )

(ma + 2)

(ma + na + 3)

2 (m + 2)

(m + n + 3)

+ lle (mv + 3)(mv + 4) (mv + 2)

32 (m + n + 4)(mv + n + 5)(m + n + 3)v v v v v v
(L-19)

The ratio of velocity fluctuation to total pressure fluctuation is
established from Equations L-18 and L-19.

2
u

U
o

2
T

2
qo

1 (L-20)
lie (mv + 3)(m

v
+ 5)

4+
16 (mv + nv + 4)(m

v
+ n + 5)v V V V

After appropriate simplification and for the velocity probability density func-
tion having the exponents mv = 4 and nv = 14 (Refer to Figure 26 for the
density functions), the ratio becomes:

2
uU

U2

APT2

2

1
11e (7) (8)

4+16 (23)
16 (22) (23)

(L-21)

2
u

U 2

o

(L-18)

2
T

2
qo

196



Results of Equation L20 , which has very little dependence on the expo-
nents of the density functions (mv, nv), were shown graphically in Figure 31
6f the main text for various levels of turbulence ( APTRMS) and flow Mach
numbers.

This result is significant. For the first time a relationship has been
developed between turbulence as velocity fluctuations and turbulence as total
pressure fluctuations. Previously, the relationship was obtained by assuming
either sonic waves or a quasi-study analysis with a constant static pressure.
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APPENDIX M

FLUID DYNAMIC MODEL OF TURBULENT FLOW - COMPUTER ROUTINE

A computer program was written to evaluate the statistical properties of
turbulent flow by numerical integration of the equations described in the main
text. These properties include the Power Spectral Density function, Auto-
correlation function, and Root Mean Square value of the total pressure fluc-

tuations. Also included are the velocity correlation terms, u2 v, and the

static pressure deviation, AP
S . A description of this computer program is the

subject of this Appendix.

The program is a digital computer solution of the Fluid Dynamic Model of
Turbulent Inlet Flow. The single vortex total pressure variations is combined
with the vortex random properties of size, strength, location, and spin direc-
tion. The resultant equation is integrated with respect to the various random
parameters and specified delay time (r) to yield the autocorrelation function.
This autocorrelation based on the deviation of the total pressure fluctuations
from the mean is made non-dimensional by the uniform stream dynamic pressure
(qo = ½ P Uo2 ). The autocorrelation function is also computed normalized by the
value at a delay (r) of zero (the mean square level).

The Fourier transform of the normalized autocorrelation function is
obtained by a numerical integration procedure. The result is the power spectral
density (PSD) function of the total pressure fluctuations.

INPUT:

The input data card arrangement is shown in Figure 1. The input parameters
are described below followed by a discussion of the Input default options.

PARAMETERS

UO - duct (engine face) flow uniform velocity - ft/sec

RHO - 'duct flow density - LBM/ft3

HU - duct height (diameter) - in.

H - distance of sensing probe from lower duct wall - in.

DP - ratio of root mean square total pressure fluctuation to average
total pressure - APT/ T

MO - Mach Number

DTAU - delay time increment for computing autocorrelation function,
normalized, DTAU = TAU * Uo/a

TAUL - limit value for computing autocorrelation function
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MVD, NVD - vortex strength Beta probability density function (PDF) exponents

MAD, NAD - vortex size Beta PDF exponents

ANP, ANM - fraction of total vortices which have positive and negative,
respectively, spin directions. Positive is counterclockwise;
negative is clockwise rotation.

LINE - Key for printing the vortex core size and strength PDF's.

PN - Number of proportional parts per decade of the frequency that
PSD is computed. l/P

Af = 10

FLM - Limiting value of frequency that PSD is computed.

1 -f _ FLM -HZ

INPUT PARAMETER DEFAULT OPTIONS

IF Uo = O, execution stops, use blank card to terminate.

IF Mo = O, Mo defaults to 0.4

IF DP = O, DP defaults to 0.02

IF TAUL = O, TAUL defaults to 3.0

IF ANP = ANM = O, set ANP = 0.5 & ANM = 0.5

IF MVD = NVD = 0 and MAD = MAD = O, then previous core size and strength PDF's
are used, but not printed.

IF MVD Z NVD and MAD # NAD, then new core size and strength, PDF's are
computed.

IF LINE = 0, the PDF's are not printed,
LINE O, the PDF's are printed.

IF DTAU O0, autocorrelation and PSD will not be computed.

OUTPUT DESCRIPTION:

The output data are printed in four groups - Probability Density Functions,
velocity correlations, autocorrelation function, and the power spectral density
function. Each output data group will be discussed separately. In addition,
the input data are printed with each output data group.

PROBABILITY DENSITY FUNCTIONS

KV - Beta PDF constant for vortex strength (velocity)

KA - Beta PDF constant for vortex size

VBAR - Mean vortex strength (vmax/Uo)

ABAR - Mean vortex core size (a/H)

A/H - ratio of vortex core size to inlet duct height

A - vortex core size - in.
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P(A) probability of vortex having size A/H

VTM/Uo - ratio of vortex maximum velocity to local flow velocity
(vQGax/Uo)

VTM - probability of vortices having strength VTM

VELOCITY CORRELATIONS

H/HU - total pressure probe location;h/H in model

H - absolute value of probe location - in.

UUBAR - mean square axial velocity fluctuation, normalized by local
velocity square (Uo2) and the term (NH/Uo).

VVBAR - mean square lateral velocity fluctuation, normalized by Uo2 and
(NH/Uo)

UVBAR - mean velocity cross correlation, normalized by Uo2 and (NH/Uo).

UBAR/Uo - mean axial velocity fluctuation, normalized by Uo and (NH/Uo).

VBAR/Uo - mean lateral velocity fluctuation, normalized by Uo and (NH/Uo).

DP/Qo - mean static pressure fluctuation. normalized by dynamic pressure
based on local flow (qo = ½ p Uo2 ) and(NH/Uo).

DUUDY - gradient of mean square axial velocity fluctuation with respect
to Y.

DVVDY - similar to DUUDY for mean square of lateral velocity

DUVDY - similar to DUUDY for velocity cross correlations

DUDY - similar to DUUDY for mean axial velocity

DVDY - similar to DUUDY for mean lateral velocity

DPBY - similar to DUUDY for mean static pressure

AUTOCORRELATION FUNCTIONS

ALUMP - intermediate results

ABAR/Uo - inverse of time delay normalizing factor

AK - number of vortices per unit time (N)

TAU*UO/A -. normalized time delay

TAU - actual time delay, T - sec

RXT - actual total pressure autocorrelation at time delay, T

RXT/RXTO - total pressure autocorrelation normalized by value at r= 0

RUT - actual velocity autocorrelation at time delay, T

RUT/RUTO - velocity autocorrelation normalized by value at r = 0.
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DENSITY FUNCTION

F - frequency HZ (CPS)

FR - normalized frequency FR = F* ABAR/Uo

GXF - total pressure power spectral density at frequency, f

GXFR - normalized power spectral density at frequency, f orFR

RMS - integrated area under PSD curve

GUF - velocity power spectral density at frequency, f

GUFR - normalized power spectral density at frequency, f or FR
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K "BLANK CARD TERMINATES EXECUTION"

"REPEAT THREE DATA CARDS FOR ADDITIONAL CASES"

F O.5 FJO.5
PN FLM

/I51I5 'I5 '151 F10.5 'F1O.5 IW5

MVD NVD MAD NAD ANP ANM LINE
I. .I I . I I 

/F10.5' F1O.5' F10.5 'F10.5 ' F10.5 F10.5 ' F

UO RHO HU H DP MO D'

o10.5

TAU

FlO. 5

TAUL

FIGURE M1 INPUT DATA DECK ARRANGEMENT.
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